• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (5): 916-923.DOI: 10.3973/j.issn.2096-4498.2025.05.006

• 研究与探索 • 上一篇    下一篇

高海拔施工隧道增压通风系统相似试验研究

王继红1, 商家旭1, 罗占夫2 3, 王树刚1 *, 吴元金2, 3, 蒋爽4, 刘祺君5   

  1. (1. 大连理工大学建设工程学院, 辽宁 大连 116024 2. 中铁隧道局集团(上海)特种高新技术有限公司, 上海 201306; 3. 广东省隧道结构智能监控与维护企业重点实验室, 广东 广州 511458; 4. 大连民族大学土木工程学院, 辽宁 大连 116600; 5. 广弘科技(大连)有限公司, 辽宁 大连 116084)

  • 出版日期:2025-05-20 发布日期:2025-05-20
  • 作者简介:王继红(1984—),女,黑龙江哈尔滨人,2013年毕业于大连理工大学,供热、供燃气、通风及空调工程专业,博士,副教授,现从事隧道及地下工程通风防灾、节能减排工作。E-mail: wangjihong@dlut.edu.cn。*通信作者: 王树刚, E-mail: sgwang@dlut.edu.cn。

Similarity Experimental Study on Pressurized Ventilation Systems for High-Altitude Tunnels

WANG Jihong1, SHANG Jiaxu1, LUO Zhanfu2, 3, WANG Shugang1, *WU Yuanjin2, 3, JIANG Shuang4, LIU Qijun5   

  1. (1. School of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China; 2. China Railway Tunnel Group (Shanghai) Special High-tech Co., Ltd., Shanghai 201306, China; 3. Guangdong Provincial Key Laboratory of Intelligent Monitoring and Maintenance of Tunnel Structure, Guangzhou 511458, Guangdong, China; 4. College of Civil Engineering, Dalian Minzu University, Dalian 116600, Liaoning, China; 5. Guanghong Technology Co., Ltd., Dalian 116084, Liaoning, China)

  • Online:2025-05-20 Published:2025-05-20

摘要: 为解决高海拔施工隧道掘进工作面存在的低压缺氧问题,保障施工人员的健康安全,借鉴矿井增阻调节方法,提出一种高海拔施工隧道新型增压通风系统,提高工作区压力,使其满足舒适性海拔的供氧标准; 推导相似准则数和相似比例,并依据雷诺数和欧拉数相似原理搭建施工隧道相似试验台; 以相似试验方法验证增压通风系统的可行性,探究3 000~3 600 m海拔对风窗流通面积比的影响,将两者进行非线性拟合得到经验公式,同时探究风量变化对增压通风系统的影响。研究结果表明: 1)当风窗流通面积比为15.3%、风机频率为46.3 Hz时,增压通风系统能够使海拔3 500 m的隧道工作区氧分压提升至海拔2 500 m的氧分压水平。2)海拔3 000 m3 600 m隧道对应风窗流通面积比分别为17.2%15.1%; 海拔越高,风窗流通面积比越小; 当海拔增加至一定范围时,风窗流通面积比基本不再变化。3)海拔越高,风量增加引起的工作区增压值越大; 同一海拔下,工作区增压值随着风量增加的变化率越大。

关键词: 高海拔隧道, 增压通风, 相似试验, 流通面积比

Abstract: Hypobaric hypoxia at the working face of high-altitude tunnels poses a significant risk to worker safety. To address this, the authors propose a novel pressurized ventilation system tailored for high-altitude construction tunnels, utilizing a resistance-increasing regulation method commonly used in mining. This system is designed to elevate the pressure in the working area, creating a comfortable oxygen-rich environment that meets safety requirements. Similarity principle numbers and ratios are derived and a test bench is constructed for similar construction tunnels based on Reynolds (Re) and Euler (Eu) number similarity principles. The feasibility of pressurized ventilation systems is validated through a similar experiment. How an altitude ranging from 3 000 to 3 600 m affects the flow area ratio of the windshield is investigated, and the data are  fit nonlinearly to obtain an empirical equation. The effects of airflow variations on the pressurized ventilation system is examined. The findings are as follows: (1) The pressurized ventilation system allows the partial pressure of oxygen in the tunnel working area at an altitude of 3 500 m to be equivalent to that at 2 500 m when the flow area ratio of the windshield and the fan frequency are 15.3% and 46.3 Hz, respectively. (2) The flow area ratios of the windshield for tunnels at altitudes of 3 000 and 3 600 m are 17.2% and 15.1%, respectively. As altitude increases, the flow area ratio of the windshield decreases; however, this ratio stabilizes within a certain altitude range. (3) At higher altitudes, increased air volume leads to greater pressurization in the working area, with the rate of change in pressurization varying significantly with airflow volume at the same altitude.

Key words: high-altitude tunnel, pressurized ventilation, similar experiment, flow area ratio