• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (10): 1803-1815.DOI: 10.3973/j.issn.2096-4498.2025.10.001

• 综述 • 上一篇    下一篇

基于驾驶者信息感知机理的隧道节能低碳照明技术研究进展

何世永1, 2, 赵君豪1, 梁波1, 2,*, 徐达1, 秦莉3, 肖尧4, 牛佳安1, 刘豪1   

  1. (1. 重庆交通大学土木工程学院, 重庆 400074; 2. 重庆交通大学 省部共建山区桥梁及隧道工程国家重点实验室, 重庆 400074; 3. 浙江海洋大学信息工程学院, 浙江 舟山 316022;4. 招商局交通科技(重庆)有限公司, 重庆 400067)
  • 出版日期:2025-10-20 发布日期:2025-10-20
  • 作者简介:何世永(1988—),男,河南开封人,2017年毕业于重庆交通大学,桥梁与隧道工程专业,博士,副教授,主要从事隧道运营安全与防灾减灾相关研究工作。E-mail: he-sy@hotmail.com。 *通信作者: 梁波, E-mail: liang_laoshi@126.com。

Research Progress on Energy-Saving and Low-Carbon Tunnel Lighting Technologies Based on Drivers′ Visual Information Perception Mechanisms

HE Shiyong1, 2, ZHAO Junhao1, LIANG Bo1, 2, *, XU Da1, QIN Li3, XIAO Yao4, NIU Jia′an1, LIU Hao1   

  1. (1. College of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China; 2. State Key Laboratory of Mountainous Bridge and Tunnel Engineering, Chongqing Jiaotong University, Chongqing 400074, China; 3. School of Information Engineering, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China; 4. China Merchants Communications Technology (Chongqing) Co., Ltd., Chongqing 400067, China)
  • Online:2025-10-20 Published:2025-10-20

摘要: 隧道作为道路交通基础设施的重要组成部分,其光环境质量对行车安全影响大,照明能耗和碳排放量高,已成为未来隧道运营安全和降碳必须解决的关键问题。从驾驶者感知特征出发,将隧道照明节能技术归纳为3类: 洞口明暗适应缓解、洞内光环境优化以及照明控制。系统梳理各类技术的节能原理、实施效果与存在的问题,并在此基础上提出基于人-车-隧道光环境等效的节能低碳照明技术实现路径。主要结论如下: 1)当前隧道照明的主要技术问题为人-车-隧道光环境影响要素的演化机理考虑不充分,运营全周期内的节能效率有待提升,缺乏系统集成应用,数字化程度低等。2)提出驾驶者信息感知物理量等效、生物量等效,以及物理量与生物量协同等效3个层次的隧道光环境等效方式,并阐述其定义和评价标准。3)基于隧道光环境等效方式,从考虑运营全周期的隧道照明安全低碳技术装备研发、因隧制宜的隧道运营能效和碳排放评价方法、人-车-隧道光环境全要素数字孪生等方面提出隧道数字低碳照明技术的实现路径。

关键词: 隧道运营, 信息感知机理, 等效照明, 低碳照明技术, 数字化, 实现路径

Abstract: Tunnels, as critical components of road transportation infrastructure, pose major challenges in terms of lighting energy consumption and carbon emissions and their light environment quality has a significant impact on driving safety. Addressing these challenges is essential to ensure operational safety and achieve carbon reduction targets. Based on drivers′ visual information perception characteristics, tunnel lighting energy-saving technologies are classified into three categories: mitigation of light-dark adaptation at portals, optimization of the internal light environment, and control of lighting. The authors systematically review the energy-saving principles, implementation effectiveness, and existing limitations of these technologies. Furthermore, an energy-saving and lowcarbon lighting framework based on the equivalent integration of the driver-vehicle-tunnel light environment system is proposed. The main conclusions are as follows. (1) Current tunnel lighting technologies inadequately consider the dynamic interaction mechanisms among the driver, vehicle, and tunnel lighting environment; exhibit suboptimal energy efficiency throughout their life cycles; and lack systematic integration and digitalization. (2) Three levels of "equivalence" in tunnel lighting are proposed: equivalence of physical quantities related to drivers′ visual information perception characteristics, equivalence of biological quantities, and the synergistic equivalence of physical and biological quantities, with corresponding definitions and evaluation criteria discussed. (3) Based on these equivalence concepts, implementation pathways for digital low-carbon tunnel lighting technology are outlined, including the development of safety and carbon-emission-oriented equipment for the full operational life cycle, tunnel-specific evaluation methods for operational energy efficiency and carbon emissions, and a comprehensive digital twin framework integrating the driver-vehicle-tunnel lighting environment system.

Key words: tunnel operation, visual information perception characteristics, equivalent lighting, low-carbon lighting technology, digitalization, implementation pathway