• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (10): 1881-1893.DOI: 10.3973/j.issn.2096-4498.2025.10.007

• 研究与探索 • 上一篇    下一篇

基于RF-SHAP多因素耦合的隧道动态光环境视觉功效响应机制

周浩1, 何世永1,2,*, 孙远义1, 侯泽玉1, 张悦1   

  1. (1. 重庆交通大学土木工程学院, 重庆 400074; 2. 重庆交通大学 省部共建山区桥梁及隧道工程国家重点实验室, 重庆 400074)
  • 出版日期:2025-10-20 发布日期:2025-10-20
  • 作者简介:周浩(1999—),男,四川泸州人,重庆交通大学土木工程专业在读博士,研究方向为隧道运营安全与防灾减灾。E-mail: 1695704576@qq.com。*通信作者: 何世永, E-mail: he-sy@hotmail.com。

Mechanism of Visual Performance in Dynamic Tunnel Lighting Based on Multi-Factor Coupled Random Forest-Shapley Additive Explanation

ZHOU Hao1, HE Shiyong1, 2, *, SUN Yuanyi1, HOU Zeyu1, ZHANG Yue1   

  1. (1. School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China; 2. State Key Laboratory of Mountain Bridge and Tunnel Engineering, Chongqing Jiaotong University, Chongqing 400074, China)
  • Online:2025-10-20 Published:2025-10-20

摘要: 隧道不同区段的光环境差异会使驾驶人视场环境发生变化,引起驾驶人信息感知错误,威胁行车安全,且视场对比度的动态变化易诱发视觉疲劳与感知能力降低。为揭示隧道动态光环境中视场对比度及其梯度变化对驾驶人视觉功效的影响机制,通过多因素控制试验(目标位置、颜色、亮度、视场对比度耦合控制),构建“视场对比度动态梯度-视觉功效响应”耦合分析框架,并创新引入RF-SHAP(random forest-Shapley additive explanation)可解释机器学习算法解析多参数非线性作用。结果表明: 1)视场对比度存在拐点效应,入口段视场对比度为0.2~0.4时可缩短反应时间20.5%,视场对比度由0.4提升到0.6时仅缩短反应时间2.3%。2)亮度与视场对比度存在强交互效应,中间段背景亮度提升至8.75 cd/m2时可补偿低视场对比度视觉信号,目标识别成功率达70%(较背景亮度为4.50 cd/m2时提升30%)。3)视野边缘(30°位置)环境敏感性高于中心区(5°位置),低视场对比度(0.2)与高亮度(6 000 cd/m2)在视野边缘(30°位置)叠加时,反应时间最大增幅达53.1%。4)暖色调目标(红色)较冷色(蓝色)识别效率提升14.2%,尤其在低视场对比度(0.1)时色差影响最显著。5)RF-SHAP模型揭示了视场对比度与亮度为视觉功效主导因子,且存在U形影响曲线,验证了动态光环境参数阈值的工程适用性。

关键词: 隧道照明, 动态光环境, 视场对比度, 视觉功效, 随机森林, SHAP值

Abstract: Variations in lighting across tunnel sections alter drivers′ fields of view, causing misperception of information and compromising safety. Additionally, dynamic changes in field contrast induce visual fatigue and reduce perceptual ability. To investigate how field contrast and its gradients influence visual performance under dynamic tunnel lighting, the authors develop a "dynamic gradient-field contrast versus visual performance" analytical framework using a multi-factor controlled experiment, in which target position, color, luminance, and contrast are systematically varied. A random forest-Shapley additive explanation (RF-SHAP) interpretable machine learning algorithm elucidates nonlinear interactions among these parameters. The results indicate the following: (1) A visual field contrast inflection effect exists: in the threshold zone, contrast of 0.2-0.4 reduces reaction time by 20.5%, whereas increasing contrast by 0.2 beyond 0.4 reduces it by only 2.3%. (2) Brightness and contrast show a strong interaction: in the interior zone, increasing background luminance to 8.75 cd/m2 compensates for low-contrast signals, raising recognition success to 70% (a 30% improvement over 4.5 cd/m2). (3) Sensitivity at the visual field periphery (30°) exceeds that of the central area (5°); when low contrast (0.2) combines with high luminance (6 000 cd/m2) at 30°, reaction time increases by up to 53.1%. (4) Recognition efficiency for warm-colored targets (red) is 14.2% higher than for cool colors (blue), with chromatic differences exerting the greatest effect under low contrast (0.1). (5) RF-SHAP analysis identifies visual field contrast and luminance as dominant factors, displaying U-shaped influence curves and confirming the practical applicability of dynamic lighting thresholds in engineering design.

Key words: tunnel lighting, dynamic light environment, visual field contrast, visual performance, random forest, Shapley additive explanation value