• 中国科学引文数据库(CSCD)来源期刊
  • 中文核心期刊中文科技核心期刊
  • Scopus RCCSE中国核心学术期刊
  • 美国EBSCO数据库 俄罗斯《文摘杂志》
  • 《日本科学技术振兴机构数据库(中国)》
二维码

隧道建设(中英文) ›› 2024, Vol. 44 ›› Issue (1): 139-147.DOI: 10.3973/j.issn.2096-4498.2024.01.012

• 规划与设计 • 上一篇    下一篇

轨道交通工程中消火栓系统设计关键技术探讨

周金忠, 张美琴, 范太兴, 杜金海   

  1. (中铁第六勘察设计院集团有限公司, 天津 300308)
  • 出版日期:2024-01-20 发布日期:2024-02-04
  • 作者简介:周金忠(1964—),男,浙江诸暨人,1987年毕业于西南交通大学,交通运输专业,本科,教授级高级工程师,全国注册设备(给水排水)工程师,现从事隧道及地下工程的消防及排水设计工作。Email: 306826754@qq.com。

Key Design Technology of Fire Hydrant System in Urban Rail Transit

ZHOU Jinzhong, ZHANG Meiqin, FAN Taixing, DU Jinhai   

  1. (China Railway Liuyuan Group Co., Ltd., Tianjin 300308, China)
  • Online:2024-01-20 Published:2024-02-04

摘要: 为设计出更加安全可靠、经济合理的轨道交通工程,介绍南京—马鞍山城际铁路(简称宁马线)消火栓系统设计中的一些关键技术及其相对于常规传统设计的优点。首先,在对规范解读及工程经验分析的基础上,首次提出“轨道交通工程中,为了保证消防安全,消防泵房保护距离尽量控制在2 000 m以内”的原则。为了将此理念落实到具体设计中,在本工程中提出一种新的消防供水方案,即“消防供水多方案组合模式”,具体内容为: 1)优先选用一站带左右各半个相邻区间的方案; 2)当区间长度小于2 000 m时,也可以采用一站带一相邻区间方案; 3)当区间长度大于4 000 m时,在一站带左右各半个相邻区间方案的基础上,在区间风井处设置独立的消防泵房,以保证所有消防泵房的保护距离控制在2 000 m以内; 4)将各消防泵房的供水单元完全独立。其次,在车站给水水压制式方面,提出2种单路水源高架站的消防供水方案及其适用范围,即: 1)室外低压、室内临时高压系统,适用范围为 “高架站布置在市政道路一侧,并且车站离市区较近、消防基础设施条件较好,能保证足量消防车及时赶到火灾现场”或“条件特别困难的既有高架车站改造”; 2)室内外共用临时高压消防系统,适用范围为 “高架站布置在市政道路中央”或“车站离市区较远、消防基础设施条件比较不利,不能保证足量消防车及时赶到火灾现场”。最后,在消防设施布置方面,提出“高架车站室外消防水池、扑救类室外消火栓”的布置原则,其中最重要的2条为: 1)室外低压、室内临时高压系统中,当高架站超出消防水池150 m保护半径时,应增设相应的消防水池取水井; 2)车站扑救面上布置室外消火栓时,应优先布置在每个高架站出入口附近。

关键词: 轨道交通工程, 消火栓系统, 消火栓泵房保护距离, 消防供水多方案组合模式, 车站给水水压制式, 室外消防水池

Abstract:  Rail transport engineering that is safe, reliable, and costeffective is a developing trend in the rail transit system. In this study, key technologies in designing the fire hydrant system of the NanjingMaanshan intercity railway and its advantages over conventional designs are introduced. Initially, through interpreting relevant codes and analyzing engineering experience, a principle of "pump room protection distance for fire hydrants within 2 000 m" and a fire water supply scheme termed "multischeme water supply combination mode in case of fire" are proposed. The specific contents include the following: (1) Scheme I, where two adjacent stations are responsible for the half sections ahead of and behind the stations, is prioritized. (2) For section lengths less than 2 000 m, Scheme II can be adopted, wherein one station is responsible for the entire singleline section between two stations. (3) For sections more than 4 000 m, an independent fire pump room should be established at the ventilation shaft based on Scheme I to ensure that the protection distance of all fire pump rooms is within 2 000 m. (4) Each fire pump rooms water supply units should be fully segregated. Subsequently, two innovative firefighting water supply schemes for singlewater source viaduct stations are proposed: the outdoor lowvoltage and indoor temporary highvoltage system for viaduct stations adjacent to municipal roads and near cities with robust firefighting infrastructure; and the indoor and outdoor temporary highvoltage system for those in the middle of municipal roads and distant from cities with inadequate firefighting infrastructure. Lastly, a layout principle for fire infrastructures, such as outdoor fire water tanks and hydrants for viaduct stations, is proposed. It is recommended that for the outdoor lowvoltage and indoor temporary highvoltage system, water tanks should be positioned if the distance between the viaduct station and the tank exceeds 150 m; fire hydrants should be strategically placed at the entrances and exits of viaduct stations.

Key words: rail transit engineering, fire hydrant system, pump room protection distance for fire hydrant, multischeme water supply combination mode in case of fire, station water supply pressure system, outdoor fire water tank