• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2024, Vol. 44 ›› Issue (3): 401-432.DOI: 10.3973/j.issn.2096-4498.2024.03.001

• 专家论坛 • 上一篇    下一篇

Primary Challenges and Developmental Trends of Tunnel Construction in Extreme Environments(极端环境隧道建造面临的主要问题及发展趋势)

陈湘生1 2 3, 全昭熹3, 陈一凡3, 沈翔1 2 3, 苏栋1 2 3, *   

  1. 1. 极端环境岩土和隧道工程智能建养全国重点实验室(深圳大学), 广东 深圳 5180602. 滨海城市韧性基础设施教育部重点实验室(深圳大学), 广东 深圳 5180603. 深圳大学土木与交通工程学院,  广东 深圳 518060
  • 出版日期:2024-03-20 发布日期:2024-04-28
  • 作者简介:陈湘生(1956—),男,湖南湘潭人,1982年毕业于淮南矿业学院(现安徽理工大学),矿井建设专业,2000年获得清华大学岩土工程专业博士学位,教授,主要从事隧道与地下工程、城市轨道交通工程、矿山建设和地层冻结技术等方面的科研工作。Email: xschen@szu.edu.cn。*通信作者: 苏栋, E-mail: sudong@szu.edu.cn。

Primary Challenges and Developmental Trends of Tunnel Construction in Extreme Environments

CHEN Xiangsheng1, 2, 3, QUAN Zhaoxi3, CHEN Yifan3, SHEN Xiang1, 2, 3, SU Dong1, 2, 3, *   

  1. (1.State Key Laboratory of Intelligent Geotechnics and Tunnelling,Shenzhen University,Shenzhen 518060,Guangdong,China;2.Key Laboratory of Coastal Urban Resilient Infrastructures (MOE),Shenzhen University,Shenzhen 518060,Guangdong,China;3.College of Civil and Transportation Engineering,Shenzhen University,Shenzhen 518060,Guangdong,China)
  • Online:2024-03-20 Published:2024-04-28

摘要: 聚焦艰险山区、深水海域与城市敏感区3类极端环境,全面梳理和总结了在此环境下隧道建造面临的主要问题、相关技术突破和未来发展趋势。针对艰险山区中极高地应力、高地温、高海拔以及活动断裂带等极端条件,总结分析围岩和隧道的变形机制、破坏机制及防护措施,并指出未来可通过大数据、机器学习等手段建立更精准的预测模型,以实现隧道建造过程的实时监控和风险评估;针对深水海域中高水压、高烈度地震、强侵蚀环境等极端条件,分析多因素耦合下沉管法及盾构法隧道管片及接头的劣损和破坏机制,总结提升其力学和耐久性能的主要技术措施,并提出未来仍需针对海底隧道管片接头的防水、抗震及抗侵蚀性能开展更深入的研究,以形成完整的理论和技术体系;针对城市敏感区隧道穿越既有隧道、敏感建构筑物、地下障碍物等挑战,总结分析盾构法和顶管法施工环境响应规律、地层变形评估方法和控制技术措施,提出未来可采用机器学习等技术辅助隧道建设,以提升预测和控制的准确性,减小建设过程对城市环境的扰动。目前,相关研究成果为极端环境下的隧道工程建设提供了重要支撑,但部分技术仍需进一步在实践中完善并形成规范,以指导后续的工程建设;而随着新一代信息技术的发展,未来隧道建造必将朝着数字化、智能化、自动化的方向发展,从而保障极端环境下隧道建设的安全、绿色、高效。

关键词: 隧道, 极端环境, 艰险山区, 深水海域, 城市敏感区, 施工技术

Abstract:

The authors focus on tunnel construction in three extreme environments: difficult mountainous areas, deep water areas, and sensitive urban areas. In particular, they meticulously organize and outline the primary challenges, relevant technological advancements, and future developmental trends associated with tunnel construction in these environments. Regarding extreme conditions such as high stresses, high temperatures, high altitudes, and active fault zones in difficult mountainous areas, the authors discuss the deformation mechanism, failure modes, and protective strategies of surrounding rocks and tunnels. It suggests that in the future, more accurate prediction models can be established using big data, machine learning, and other methodologies to enable realtime monitoring and risk assessment of tunnel construction processes. Further, regarding extreme conditions such as high water pressures, intense earthquakes, and high erosion rates in deep water areas, the authors delineate the deterioration and failure mechanisms of tunnel segments and joints employing the immersed tube and shield tunneling methods under multifactor coupling. Additionally, the authors summarize key technical strategies to improve the mechanical robustness and durability of these structures while advocating further research on the waterproofing, seismic, and erosion resistance of submarine tunnel segment joints, thus establishing a comprehensive theoretical and technical system. Finally, regarding the complexities of tunneling through existing tunnels, sensitive structures, and underground obstacles in sensitive urban areas, the authors summarize environmental response laws, relevant geological deformation assessment methods, and technical control strategies associated with shield tunneling and pipe jacking methods. They propose that in the future, machine learning and alternative technologies can assist in tunnel construction, improve prediction accuracy and control, and minimize disturbances to the urban environment throughout the construction process. Overall, although pertinent research results offer crucial support for tunnel construction in extreme environments, certain technologies need further improvement and standardization in their practical applications to guide subsequent engineering construction. With the development of nextgeneration information technology, future tunnel construction will inevitably move toward digitization, intelligence, and automation, ensuring the safety, sustainability, and efficiency of tunnel construction in extreme environments.

Key words: tunnel, extreme environments, hazardous mountainous areas, deepsea waters, sensitive urban areas, construction technique