• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2024, Vol. 44 ›› Issue (3): 464-474.DOI: 10.3973/j.issn.2096-4498.2024.03.004

• 研究与探索 • 上一篇    下一篇

基于总安全系数法的喷射混凝土支护承载能力的试验研究

肖明清1, 2, 徐晨1, 2, 崔岚3, 4, *, 盛谦3, 4, 陈健3, 4, 谢壁婷1, 2, 吴鹏3, 4   

  1. 1. 中铁第四勘察设计院集团有限公司, 湖北 武汉 430063;  2. 水下隧道技术国家地方联合工程研究中心, 湖北 武汉 4300633. 中国科学院武汉岩土力学研究所岩土力学与工程国家重点实验室, 湖北 武汉 430071; 4. 中国科学院大学, 北京 100049
  • 出版日期:2024-03-20 发布日期:2024-04-28
  • 作者简介:肖明清(1971—),男,湖南邵阳人,1992年毕业于西南交通大学,地下工程与隧道工程专业,博士,正高级工程师,主要从事隧道与地下工程方面的设计研究工作。Email: tsyxmq@163.com。 *通信作者: 崔岚, Email: lcui@whrsm.ac.cn。

Experimental Study of Bearing Capacity of Shotcrete Lining Based on Total Safety Factor Method

XIAO Mingqing1, 2, XU Chen1, 2, CUI Lan3, 4, *, SHENG Qian3, 4, CHEN Jian3, 4, XIE Biting1, 2, WU Peng3, 4   

  1. (1.China Railway Siyuan Survey and Design Group Co.,Ltd.,Wuhan 430063,Hubei,China;2.National & Local  Joint Engineering Research Center of Underwater Tunnel Technology,Wuhan 430063,Hubei,China;3.State Key  Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy  of Sciences,Wuhan 430071,Hubei,China;4.University of Chinese Academy of Sciences,Beijing 100049,China)
  • Online:2024-03-20 Published:2024-04-28

摘要: 为验证总安全系数法中喷层的荷载结构模型及其安全系数计算方法,研制大型隧道结构模型试验系统,采取结构试验的方法,开展毛洞、不同厚度喷层以及二次衬砌的加载破坏试验。通过围岩和细砂材料的三轴试验明确模型试验中各材料的物理与力学参数,模拟毛洞、不同厚度喷层以及二次衬砌的加载破坏全过程,依据破坏状态明确喷层与二次衬砌的设计承载能力,试验中监测围岩应力应变、喷层内外侧应变和喷层位移,结合监测结果分析喷层与二次衬砌在承载过程中的变形特征与受力特征,明晰喷层与二次衬砌的承载机制,并与总安全系数法理论计算结果进行对比分析。结果表明: 1)在试验断面条件下喷层受力状态为小偏心受压,喷层与围岩之间的粘结能有效传递剪力,从而减少了喷层的弯矩,有利于充分发挥喷层的抗压强度,同厚度情况下喷层的设计承载力要高于二次衬砌; 2)试验得到的厚度为2 cm4 cm喷层的设计承载力比总安全系数法理论计算结果分别大27.0%22.9%,表明总安全系数法的喷层承载力计算模型是合理的,并具有合适的安全性。

关键词: 隧道, 支护结构设计, 喷射混凝土支护, 模型试验, 总安全系数法, 破坏试验, 承载能力

Abstract: Herein, a largescale tunnel structural model experimental system is established. First, loaded damage tests are conducted on tunnels without support, supported by shotcrete of various thicknesses, and supported by secondary lining through structural tests to validate the feasibility of the load structure model of the shotcrete layer using the total safety factor method and its calculation method. The physicomechanical parameters of each material in the model test are then clarified through triaxial tests of the surrounding rocks and fine sand materials. The entire loaded damage process of the tunnels without support, supported by shotcrete of various thicknesses, and supported by secondary lining, is simulated. The designed bearing capacity of the shotcrete and secondary linings is determined according to tunnel failure states. The stress and strain of the surrounding rocks, internal and external strain of the shotcrete layers, and displacement of the shotcrete layers are monitored. Finally, the deformation and stress characteristics of shotcrete and secondary linings are analyzed for determining the bearing capacity of these materials. Comparing the results with the calculated results using the total safety factor method shows the following: (1) The stress of the shotcrete layer exhibits a small eccentric compressive stress. The cohesion between the shotcrete lining and surrounding rock mass can transfer the shearing force in the rock mass, reducing the bending moment and greatly improving the compressive strength of the shotcrete lining. The designed bearing capacity of the shotcrete lining is higher than that of the secondary lining under the same thickness. (2) The designed bearing capacities of the shotcrete lining with thicknesses of 2 and 4 cm are 27.0% and 22.9% higher, respectively, than the theoretical calculation results by the total safety factor method, indicating the rationality of the calculation model of the bearing capacity of the shotcrete lining by the total safety factor method.

Key words: tunnel, support structure design, shotcrete layer; model test, total safety factor method, destructive test, bearing capacity