• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2024, Vol. 44 ›› Issue (10): 1982-1992.DOI: 10.3973/j.issn.2096-4498.2024.10.007

• 结构病害诊治与韧性提升专题 • 上一篇    下一篇

明挖法超长节段现浇混凝土隧道早期开裂机制现场试验研究

肖碧宏1, 蒋礼2, 梁振宇3, 刘唐进1, 郝小虎2, 傅金阳3, *, 王树英3   

  1. 1. 湖南建工集团有限公司, 湖南 长沙 410118 2. 长沙市市政工程有限责任公司, 湖南 长沙 410021; 3. 中南大学土木工程学院, 湖南 长沙 410075
  • 出版日期:2024-10-20 发布日期:2024-11-12
  • 作者简介:肖碧宏(1987—),男,湖南娄底人,2008年毕业于中国人民解放军工程兵学院,土木工程专业,本科,高级工程师,主要从事市政工程的施工建设与管理工作。E-mail: 563456009@qq.com。*通信作者: 傅金阳, E-mail: jy.fu@csu.edu.cn。

Field Test on Early Cracking Mechanism of Super-Long Section Cast-in-Place Concrete of Open-Cut Tunnels

XIAO Bihong1, JIANG Li2, LIANG Zhenyu3, LIU Tangjin1, HAO Xiaohu2, FU Jinyang3, *, WANG Shuying3#br#   

  1. (1. Hunan Construction Engineering Group Co., Ltd., Changsha 410118, Hunan, China; 2. Changsha Municipal Engineering Co., Ltd., Changsha 410021, Hunan, China; 3. School of Civil Engineering, Central South University, Changsha 410075, Hunan, China)
  • Online:2024-10-20 Published:2024-11-12

摘要: 为研究超长节段明挖隧道混凝土早期开裂机制,依托实际工程,根据隧道前期已浇筑节段开裂情况调查结果,在隧道侧墙和顶板结构的中心线处埋置温度、湿度、应变传感器,对混凝土早龄期的温度、湿度、应变进行连续监测,并结合温度应力理论和现场裂缝调查对隧道混凝土早期开裂机制进行分析。分析结果表明: 1)隧道侧墙和顶板结构浇筑后产生的水化热温升可达40 ℃以上,隧道顶板结构应变的变化趋势主要与温度相关。2)结构温度下降引起的收缩变形在受到下部旧混凝土的约束作用后产生的拉应力是引起开裂的主要原因;长度方向上的应变差、里表温差产生的不均匀收缩和湿度下降产生的干燥收缩会进一步加大开裂风险。3)结构中心与外表面的最大温差高出与内表面的最大温差12 ℃以上,因而结构外表面更容易出现开裂。4)在连续式的外约束作用下,浇筑段中部开裂的可能性更大。5)结构表面与内部的裂缝会逐渐沿裂缝走向扩展导致风险较低的区域也出现开裂。

关键词: 明挖法隧道, 现浇混凝土, 早期开裂, 现场试验, 温度场, 相对湿度, 应变

Abstract: The cracks of a complete super-long cast-in-place concrete section of an open-cut tunnel are investigated to explore its early cracking mechanism. Sensors are embedded in central lines of the sidewall and roof structure to continuously monitor the temperature, humidity, and strain. Finally, the early cracking mechanism of the tunnel concrete is analyzed using temperature stress theories and field crack investigation. The results reveal the following: (1) The temperature rise of hydration heat generated by the sidewall and roof structure of a tunnel after concrete pouring reaches over 40 °C, and the strain variation trend of the tunnel roof structure is primarily affected by temperature. (2) The tensile stress caused by the temperature shrinkage in the cooling stage under the constraint of the construction joint is the main reason for cracking. The strain difference along the length direction, the nonuniform shrinkage caused by the temperature difference between the inside and the surface, and the dry shrinkage caused by the decrease in humidity further increase the cracking risk. (3) The maximum temperature difference between the center and the outer surface of the structure is over 12 °C higher than the maximum temperature difference between the center and the inner surface of the structure, and the outer surface of the structure is more prone to cracking. (4) The middle part of the section under continuous external constraint is more prone to cracking. (5) Cracks on the surface of the structure gradually spread, causing cracks to appear in areas where the risk of cracking is low.

Key words: open-cut tunnel, cast-in-place concrete, early cracking, field test, temperature field, relative humidity, strain