• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2024, Vol. 44 ›› Issue (12): 2332-2349.DOI: 10.3973/j.issn.2096-4498.2024.12.00

• 研究与探索 • 上一篇    下一篇

Study on Effects of Temperature Field Distribution in Railway Tunnels in Cold Regions and Countermeasures(寒区铁路隧道温度场分布相关效应与对策研究)

马志富1, 田四明2, 杨昌贤1, *, 王伟2, 王嘉伟3   

  1. 1. 中国铁路设计集团有限公司, 天津 300308 2. 中国铁路经济规划研究院有限公司, 北京 100038 3. 天津大学建筑工程学院, 天津 300072
  • 出版日期:2024-12-20 发布日期:2025-01-11
  • 作者简介:马志富(1969—),男,甘肃古浪人,1992年毕业于西南交通大学,隧道工程专业,本科,正高级工程师,主要从事隧道技术研究工作。E-mail: mazhifutj@126.com。*通信作者: 杨昌贤, E-mail: ycxycxycx007@sina.cn。

Study on Effects of Temperature Field Distribution in Railway Tunnels in Cold Regions and Countermeasures

MA Zhifu1, TIAN Siming2, YANG Changxian1, *, WANG Wei2, WANG Jiawei3   

  1. (1. China Railway Design Corporation, Tianjin 300308, China; 2. China Railway Economic and Planning Research Institute Co., Ltd., Beijing 100038, China; 3. School of Civil Engineering, Tianjin University, Tianjin 300072, China)
  • Online:2024-12-20 Published:2025-01-11

摘要: 为研究寒区铁路隧道温度场分布相关效应对隧道抗防冻设计的影响,依托高纬度严寒地区3个运营铁路项目,选择5座典型隧道开展洞内温度场分布规律测试和研究,提出寒区隧道洞内温度场分布的相关效应,并结合洞内温度场分布规律对海拔相对高的洞口端抗防冻设计优化进行初步分析。研究结果表明: 1)冬季寒区隧道洞内温度场分布具有明显的烟囱效应、遮蔽效应、尺度效应和冷桥效应; 2)受热位差、洞口间静压差和大气自然风压共同作用时,洞口间静压差占主导作用产生明显的烟囱效应影响,冬季寒区长大铁路隧道洞内气温沿纵向分布出现明显的不均一性,导致洞外冷空气持续不断由海拔低的洞口端向高的洞口端流动,加剧洞内外的热交换; 3)线位与冬季主导风向呈大角度相交的隧道,冬季测试期其洞口间静压差与热位差的比值是线位与冬季主导风向基本一致的隧道对应比值的一半,表明线位与冬季主导风向呈大角度或垂直时,对隧道洞身保温防冻是有利的; 4)对于寒区长大铁路人字坡隧道,海拔相对高的洞口一侧抗防冻设防长度可较海拔相对低的一侧缩短,寒区铁路长大单面坡隧道海拔相对高的洞口一侧抗防冻设计措施可较海拔相对低的一侧减弱。

关键词: 寒区铁路隧道, 温度场效应, 分布规律, 工程对策, 主导因素

Abstract: In order to study the influence of effects of temperature field distribution in railway tunnels in cold regions on their anti-freeze design, 5 typical tunnels are selected from 3 operating railway projects in high latitude severe cold regions to test and study the temperature field distribution law in tunnels. On this basis, effects of temperature field distribution in tunnels in cold regions are put forward, and the optimization of anti-freeze design of high altitude portals is preliminarily analyzed according to the temperature field distribution law in tunnels. The research results show that: (1) In winter, the temperature field distribution in tunnels in cold regions has obvious chimney effect, shielding effect, scale effect, and cold bridge effect. (2) When railway tunnels are subject to thermal potential difference, static pressure difference between portals, and atmospheric natural wind pressure, the static pressure difference between portals dominates and produces obvious chimney effect. In winter, there is obvious non-uniformity in the longitudinal distribution of air temperature in long railway tunnels in cold regions, resulting in continuous flow of cold air outside tunnel from low altitude portal to high altitude portal, which intensifies the heat exchange between inside and outside tunnel. (3) For tunnels whose alignment intersects the prevailing winter wind direction at a large angle, the ratio of their static pressure difference between portals to thermal potential difference during the winter testing period is half of that of tunnels whose alignment is basically consistent with the prevailing winter wind direction. This indicates that it is beneficial for thermal insulation and anti-freezing of tunnels if their alignment is perpendicular to or intersects the prevailing winter wind direction at a large angle in cold regions. (4) For long "double spur grade" railway tunnels in cold regions, the anti-freeze protection length at the high altitude portal can be shorter than that at the low altitude portal. For long single-slope railway tunnels in cold regions, the anti-freeze protection measures for the high altitude portal can be weaker than those for the low altitude portal.

Key words: railway tunnels in cold regions, temperature field effect, distribution law, engineering countermeasures, dominant factors