• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2024, Vol. 44 ›› Issue (12): 2521-2529.DOI: 10.3973/j.issn.2096-4498.2024.12.019

• 监控与维护 • 上一篇    下一篇

铁路隧道基底结构托换整治用钢垫梁力学特性及应用研究

赵鹏1, 2, 叶振东3, 马伟斌1, 2, *, 颜明冬1, 2, 张笑晨4   

  1. (1. 中国铁道科学研究院集团有限公司铁道建筑研究所, 北京 100081; 2. 高速铁路轨道系统全国重点实验室, 北京 100081; 3. 中国铁路成都局集团有限公司, 四川 成都 610000; 4. 中国铁路太原局集团有限公司, 山西 太原 030000)

  • 出版日期:2024-12-20 发布日期:2025-01-11
  • 作者简介:赵鹏(1989—),男,河南商丘人,2016年毕业于北京交通大学,隧道与地下工程专业,硕士,副研究员,主要从事铁路隧道缺陷与病害诊治技术、数字化运维技术等方面的研究工作。E-mail: 979840234@qq.com。 通信作者: 马伟斌, E-mail: dwangfei@163.com。

Mechanical Characteristics and Application of Steel Cushion Beams for Subgrade Structure Underpinning in Railway Tunnels

ZHAO Peng1, 2, YE Zhendong3, MA Weibin1, 2, *, YAN Mingdong1, 2, ZHANG Xiaochen4   

  1. (1. Railway Engineering Research Institute, China Academy of Railway Sciences Corporation Limited, Beijing 100081, China; 2. State Key Laboratory of High-speed Railway Track System, Beijing 100081, China; 3. China Railway Chengdu Group Co., Ltd., Chengdu 610000, Sichuan, China; 4. China Railway Taiyuan Group Co., Ltd., Taiyuan 030000, Shanxi, China)

  • Online:2024-12-20 Published:2025-01-11

摘要: 为实现隧道基底结构在不中断运营的前提下拆换整治, 提出一种结构灵活、施工便捷、适应铁路运营特点的隧道基底结构钢垫梁托换整治技术。首先,对基底托换技术的原理、工艺与钢垫梁结构形式进行分析;然后,通过钢垫梁结构足尺加载试验与数值仿真,分析钢垫梁在C80CRH3列车活载下的承载特性;最后,研究得出跨度与横梁间距对钢垫梁变形特性的影响规律,即纵梁应力与跨中竖向变形随纵梁长度增加而增大,钢垫梁中间横梁的位置对横向变形影响大于竖向位移。结合托换整治技术在重载铁路和高速铁路隧道工程应用案例可知,列车通过时钢垫梁的变形与动力响应处于可控范围,托换整治后隧道基底结构变形稳定,表明钢垫梁能较好适用于铁路隧道基底结构托换整治。

关键词: 铁路隧道, 基底病害, 结构托换, 钢垫梁, 模型试验, 数值仿真

Abstract: A flexible and easy-to-construct steel cushion beam underpinning technology is proposed to dismantle and remedy tunnel subgrade structure issues while keeping railway tunnels operational. The principle, process, and structural form of the steel cushion beam are introduced. The load-bearing characteristics of the steel cushion beams under the live loads of trains C80 and CRH3 are analyzed using full-scale loading tests and numerical simulations of the steel cushion beam structure. In addition, the effects of span and beam spacing on the deformation characteristics of the steel cushion beams are investigated. It is found that the longitudinal beam stress and middle crossbeam deformation increase with the length of the longitudinal beam. Furthermore, the position of the middle crossbeam has a greater influence on lateral displacement compared to vertical displacement. Application cases in heavy-haul and high-speed railway tunnels reveal that the deformation and dynamic response of the steel cushion beam are controllable during train operations. After the underpinning remediation, the deformation of the tunnel subgrade structure remains stable. These results indicate that the steel cushion beam is suitable for underpinning and remediating railway tunnel subgrade structures.

Key words: railway tunnel, subgrade disease, structure underpinning, steel cushion beam, model test, numerical simulation