• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (1): 209-220.DOI: 10.3973/j.issn.2096-4498.2025.01.018

• 施工机械 • 上一篇    下一篇

基于多传感器混合体系的悬臂式掘进机截割可视化系统研究

温承永1, 2, 应宗权1, 2, *, 王东3, 谢骏3   

  1. 1. 中交四航工程研究院有限公司, 广东 广州 510230 2.中交集团交通基础工程环保与安全重点实验室, 广东 广州 510230; 3. 中交四航局第四工程有限公司, 四川 成都 610213)

  • 出版日期:2025-01-20 发布日期:2025-01-20
  • 作者简介:温承永(1989—),男,江西九江人,2014年毕业于长沙理工大学,港口、海岸及近海工程专业,硕士,高级工程师,主要从事数字化施工技术研究工作。 E-mail: wenchengyong@ccccltd.cn。*通信作者: 应宗权, E-mail: yingzongquan@ccccltd.cn。

Excavating Visualization System of a Cantilever Excavator Based on a Multi-Sensor Combined System

WEN Chengyong1, 2, YING Zongquan1, 2, *, WANG Dong3, XIE Jun3   

  1. (1. CCCC Fourth Harbor Engineering Institute Co., Ltd., Guangzhou 510230, Guangdong, China; 2. Key Laboratory of Environment and Safety Technology of Transportation Infrastructure Engineering, CCCC, Guangzhou 510230, Guangdong, China; 3. The Fourth Engineering Company of CCCC Fourth Harbor Engineering Co., Ltd., Chengdu 610213, Sichuan, China)

  • Online:2025-01-20 Published:2025-01-20

摘要: 针对输水隧洞悬臂式掘进机截割施工中粉尘污染严重、操作时存在视野盲区、隧洞超欠挖量难以控制的问题,首先,通过增设多种传感器对悬臂式掘进机进行数字化功能升级,按照传感器子系统、PLC子系统、通讯子系统及信息可视化子系统等功能模块搭建截割可视化系统,为操作手提供可视化施工窗口;然后,基于D-H法创建悬臂式掘进机的运动学模型,通过多参数坐标解析方程式对悬臂式掘进机各种站位姿态下的截割目标点进行精准空间坐标解析;最后,从施工便利性及工况适应性的角度出发,提出轴线偏位正向标定法和逆向标定法2种掘进机轴线偏位补偿方法,并在掌子面上布置激光示教点进行标定测试,结果显示逆向标定方法的误差在2 cm以内,可实现不同洞壁条件下掘进机的精准定位。在隧洞内开展截割头空间轨迹识别试验,通过比较试验点距离的激光测量值和手持端软件的计算值可知,该截割可视化系统误差在3.5 cm以内,手持端平板截割目标的运动响应延迟率最高为0.2 s

关键词: 输水隧洞, 悬臂式掘进机, 可视化系统, 坐标解析, 截割头, 空间轨迹

Abstract: The cantilever excavator method has several disadvantages when used in water-conveyance tunnels. These include high dust concentration during construction, operational blind spots, and difficulties in controlling over-excavation and under-excavation. To address these issues, the digital capabilities of the cantilever excavator have been upgraded by arranging various sensors. These include a sensor subsystem, a PLC subsystem, a communication subsystem, and an information visualization subsystem, forming an excavating visualization system. A kinematics model for the cantilever excavator is established using the D-H method. By designing a multiparameter coordinate analytic equation, precise analysis of the excavating target coordinates is achieved across various positions. Finally, to improve construction efficiency and adaptability to various conditions, two compensation methods for axis deviation, namely forward calibration and reverse calibration, are proposed. Laser teaching points are arranged on the target surface for calibration testing, with results demonstrating that these methods kept calibration errors within 2 cm, enabling precise positioning of the cantilever excavator under different tunnel wall conditions. A space trajectory recognition test for the cutting head is carried out in the tunnel site. When comparing measurements from laser systems with calculations made via handheld terminal software for the distance between test points, the deviation of the visualization system is within 3.5 cm. The maximum delay rate of the motion response for cutting targets in handheld terminal is 0.2 s.

Key words: water-conveyance tunnel, cantilever excavator, visualization system, precise analysis of coordinate, cutting head, space trajectory