• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (S1): 113-124.DOI: 10.3973/j.issn.2096-4498.2025.S1.013

• 研究与探索 • 上一篇    下一篇

基于多输出机器学习模型的深大圆井变形预测

林华生1, 唐欣薇1 *, 聂鼎2, 黄文敏3, 宋丹青1   

  1. 1. 华南理工大学土木与交通学院, 广东 广州 510640 2. 中国水利水电科学研究院, 北京 1000383. 广东省水利电力勘测设计研究院有限公司, 广东 广州 510635
  • 出版日期:2025-07-15 发布日期:2025-07-15
  • 作者简介:林华生(1997—),男,广东汕头人,华南理工大学土木工程专业在读硕士,研究方向为地下结构智能化设计。E-mail: huashenglin_5@163.com。*通信作者: 唐欣薇, E-mail: cttangxw@scut.edu.cn。

Prediction of Deep and Large Shaft Deformation Based on Multi-Output Machine Learning Model

LIN Huasheng1, TANG Xinwei1, *, NIE Ding2, HUANG Wenmin3, SONG Danqing1   

  1. (1. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, Guangdong, China; 2. China Institute of Water Resources and Hydropower Research, Beijing 100038, China; 3. Guangdong Hydropower Planning and Design Institute Co., Ltd., Guangzhou 510635, Guangdong, China)
  • Online:2025-07-15 Published:2025-07-15

摘要: 为了快速高效地确定深大圆井的变形值,提高设计效率,首先建立表征其空间力学效应的三维有限元数值模型,并结合现场监测数据对数值模型进行验证。随后基于该数值模型,建立典型地层条件和结构尺寸对圆井变形影响的数据库,选取随机森林和梯度提升树2种算法,采用单目标模型组合、链式回归组合和多输出组合3种组合方式,构建6组预测施工过程圆井整体位移的多输出预测模型。结果表明: 1)多目标-梯度提升(MO-GB)模型可以同时考虑多个预测指标,对应的最大位移值均方根误差(ERMS)为0.457,相比其他模型最小,且最大位移值和出现位置的决定系数(R2)均超过0.98,预测效果最佳。2)随着圆井开挖深度的增加,采用MO-GB模型预测得到的最大位移值和出现位置与三维有限元模型数值仿真计算结果基本一致,不同开挖深度预测位移点构成的折线可包络住相应阶段数值仿真变形曲线,预测值可为圆井结构设计提供参考,指导圆井结构选型,为施工图设计提供基础。

关键词: 深大圆井, 空间地基板模型, 梯度提升算法, 多目标输出, 变形预测

Abstract: Herein, a method characterizing the spatial effects of deep large-diameter shaft structures in water resource allocation projects is established. Based on a three-dimensional finite element model, a database is constructed to capture the influence of typical geological conditions and structural dimensions on shaft deformation. To further predict the overall structural deformation during the construction process, a multi-output prediction model for shaft displacement is proposed. Two algorithms, gradient boosting trees and random forest, are selected, and three combinations of single-target models, multi-output models, and regressor chain models are employed. This results in the creation of six prediction models: single-target gradient boosting, multi-output gradient boosting (MO-GB), regressor chain gradient boosting, single-target random forest, multi-output random forest, and regressor chain random forest. The results indicate that: (1) The MO-GB model considers multiple prediction indicators, and its corresponding maximum deformation ERMS is 0.457, smaller than other models; it performs the best in terms of predictive accuracy, with a determination value R2 for maximum displacement and its corresponding location exceeds 0.98. (2) The maximum deformation value and its corresponding location using MO-GB model align well with three-dimensional finite element model results, providing guidance for design of shaft structure.

Key words: deep and large shaft, spatial foundation pit model, gradient boosting algorithm, multi-output, deformation prediction