• 中国科学引文数据库(CSCD)来源期刊
  • 中文核心期刊中文科技核心期刊
  • Scopus RCCSE中国核心学术期刊
  • 美国EBSCO数据库 俄罗斯《文摘杂志》
  • 《日本科学技术振兴机构数据库(中国)》
二维码

隧道建设(中英文) ›› 2023, Vol. 43 ›› Issue (8): 1348-1359.DOI: 10.3973/j.issn.2096-4498.2023.08.009

• 研究与探索 • 上一篇    下一篇

微波照射下岩石的升温与破碎特性研究

刘超尹1, 2, 卢高明1, 2, 周建军1, 2, 姚华彦3, 姜礼杰4, 范文超1, 2   

  1. 1. 盾构及掘进技术国家重点实验室, 河南 郑州 450001; 2. 中铁隧道局集团有限公司,  广东 广州 511458; 3. 合肥工业大学土木与水利工程学院, 安徽 合肥 230000;  4. 中铁工程装备集团有限公司, 河南 郑州 450016
  • 出版日期:2023-08-20 发布日期:2023-09-11
  • 作者简介:刘超尹(1996—),男,河南洛阳人,2022年毕业于郑州大学,道路与铁道工程专业,硕士,助理工程师,主要从事隧道工程建设及微波辅助破岩等研究工作。Email: 13838189513@163.com。

Heating and Fracturing Characteristics of Rocks Under Microwave Irradiation

LIU Chaoyin1, 2, LU Gaoming1, 2, ZHOU Jianjun1, 2, YAO Huayan3, JIANG Lijie4, FAN Wenchao1, 2   

  1. (1. State Key Laboratory of Shield Machine and Boring Technology, Zhengzhou 450001, Henan, China; 2. China Railway Tunnel Group Co., Ltd., Guangzhou 511458, Guangdong, China; 3. College of Civil Engineering, Hefei University of Technology, Hefei 230000, Anhui, China; 4. China Railway Engineering Equipment Group Co., Ltd., Zhengzhou 450016, Henan, China)
  • Online:2023-08-20 Published:2023-09-11

摘要: 为论证微波辅助破岩过程中岩石的升温破碎理论,选取玄武岩作为岩石试样,对不同微波功率和照射时间下的岩石试样进行了5组微波照射试验,获得了岩石表面的温度分布和破碎状态。利用COMSOL多物理场建模软件进行仿真模拟,研究岩石内部的电场和温度场分布,揭示岩石的破碎机制。试验结果表明,随着微波发射功率和照射时间的增加,岩石表面的温度、破碎面积、破碎点深度、裂缝数量和裂缝长度均有所增加。模拟结果表明,微波由喇叭天线传递至岩石上表面时电场强度急剧降低,岩石内部电场强度整体呈倒锥形分布;微波照射下的岩石破碎损伤主要与电场强度有关,电场强度的强弱导致不同部位能量密度分布不均匀,进而引起温度梯度变化,产生不同的热膨胀,导致破碎损伤的发生。岩石的破碎损伤演化分为3个阶段,根据岩石试样升温过程进行数学模型回归分析发现,微波发射功率对温度特性的影响更为显著,当微波照射功率为26.645 kW时,微波能在极短的时间内使岩石达到破碎损伤状态,照射效果最佳。

关键词: 微波辅助破岩, 温度特性, 电场强度, COMSOL, 破碎特性

Abstract: To explore the rock heating and fracturing mechanism in microwaveassisted rock breaking, five groups of microwave irradiation tests are conducted on basalt samples under various microwave power and irradiation times, which provide the temperature distribution and fragmentation state of rock surface. For deducing the rockbreaking mechanism, the COMSOL multiphysical fieldmodeling software is used to simulate the distribution of electric and temperature fields inside the rock. Test results show that the increase in the microwaveemission power and irradiation time increase the rocksurface temperature, breaking area, breakingpoint depth, crack quantity, and crack length. Furthermore, simulation results reveal the following: (1) The electricfield intensity in rock decreases sharply when the microwave is transmitted from the microwave antenna to the upper rock surface and exhibits an inverted cone distribution. (2) Additionally, the rockfragmentation damage under microwave irradiation is revealed to be mainly attributed to the electricfield intensity. The electricfield power results in an uneven distribution of energy density in different rock parts, causing a change in the temperature gradient and foreign thermal expansion, which lead to fragmentation damage. The evolution of rockfragmentation damage can be divided into three stages. Based on the regression analysis of mathematical models for the heating process of rock samples, the microwaveemission power has considerable influence on temperaturedependent characteristics. A microwave irradiation power of 26.645 kW is shown to cause fragmentation damage of rock in a short time, indicating the best irradiation effect.

Key words:  , microwaveassisted rock breaking, temperature characteristics, electricfield intensity, COMSOL, fracturing characteristics