• 中国科学引文数据库(CSCD)核心期刊
  • 中文核心期刊中文科技核心期刊
  • Scopus RCCSE中国权威学术期刊
  • 美国EBSCO数据库 俄罗斯《文摘杂志》
  • 《日本科学技术振兴机构数据库(中国)》
二维码

隧道建设(中英文) ›› 2024, Vol. 44 ›› Issue (6): 1274-1282.DOI: 10.3973/j.issn.2096-4498.2024.06.014

• 研究与探索 • 上一篇    下一篇

基于图像识别的公路隧道围岩智能动态分级研究

周梦琳1, 陈强1 *, 汪波2, 宋自愿1, 彭传阳1, 程黎1   

  1. (1. 西南交通大学地球科学与工程学院, 四川 成都 610031; 2. 西南交通大学 交通隧道工程教育部重点实验室, 四川 成都 610031)
  • 出版日期:2024-06-20 发布日期:2024-07-12
  • 作者简介:周梦琳(1998—),女,河南洛阳人,西南交通大学地质资源与地质工程专业在读硕士,研究方向为地下岩土工程智能化、预应力锚索的应用。E-mail: 17395908015@163.com。

Intelligent Dynamic Classification of Surrounding Rock of Highway Tunnels Based on Image Recognition

ZHOU Menglin1, CHEN Qiang1, *, WANG Bo2, SONG Ziyuan1, PENG Chuanyang1, CHENG Li1   

  1. (1. Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; 2. Key Laboratory of Transportation Tunnel Engineering, the Ministry of Education, Southwest Jiaotong University, Chengdu 610031, Sichuan, China)
  • Online:2024-06-20 Published:2024-07-12

摘要: 针对勘察设计阶段判别的隧道围岩等级与施工过程中实际揭露的围岩情况不符的问题,提出一种以隧道施工期实际揭露的围岩为研究对象的智能动态分级方法。首先,依托甘肃省渭武高速公路木寨岭隧道工程,利用单反相机采集掌子面图像,基于深度学习ResNet18网络设计T-ResNet模型,进行掌子面围岩图像特征定性识别分类; 然后,利用数字图像处理技术定量识别、提取节理裂隙特征参数,进而确定掌子面完整性指标; 最后,结合岩石坚硬程度、岩体完整程度、主结构面产状、地下水发育状况、初始地应力、节理延展性6个指标建立围岩分级指标体系,并采用特征加权KNNK-nearest neighbor)算法模型实现隧道围岩智能动态分级。研究结果表明: 1T-ResNet模型在节理裂隙测试集的准确率达到83.23%,在地下水测试集的准确率达到92.86%,可以实现围岩特征的有效识别与精确分类; 2)使用机器视觉方法处理现场围岩图像,可快速提取岩体完整性系数和地下水发育情况,实现现场智能化高效分析; 3KNN智能动态分级方法在依托工程具有良好的适用性和较高的准确性,可有效实现隧道施工过程中的围岩动态分级。

关键词: 公路隧道; 深度学习; 数字图像处理; , KNN算法; 围岩分级

Abstract:  A dynamic classification method is developed based on the actual revealed conditions of the surrounding rock of tunnels during tunnel construction. This method can reduce economic losses, safety accidents, and other problems caused by differences between the actual classification of surrounding rock and geological surveying results. First, a case study is conducted on the Muzhailing tunnel on the Weiyuan-Wudu expressway in Gansu, China; tunnel face images are collected using a DSLR camera, and a T-ResNet model is designed based on the deep-learning ResNet18 network to identify the features of the tunnel face rock images qualitatively. Then, by leveraging digital image processing technology to quantitatively extract joint and fracture characteristics, the integrity index of the tunnel face is determined. Finally, a rock quality assessment index system is established based on indices of rock hardness, rock mass integrity, main structural plane occurrence, groundwater development condition, initial ground stress, and joint expansibility. Thus, an intelligent dynamic classification of tunnel rock is achieved using the feature-weighted K-nearest neighbors(KNN) algorithm. The results demonstrate the following: (1) The accuracies of the T-ResNet model in the joint fracture test set and the groundwater test set reach 83.23% and 92.86%, respectively, showing its feasibility and high precision in surrounding rock recognition. (2) The machine vision method used in processing the on-site surrounding rock images can rapidly extract the rock mass integrity coefficient and groundwater development condition, realizing intelligent and efficient analysis. (3) The KNN intelligent dynamic classification method has good applicability and high accuracy in the case study.

Key words: highway tunnel, deep learning, digital image processing technology, K-nearest neighbor algorithm, surrounding rock classification