• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2024, Vol. 44 ›› Issue (11): 2233-2240.DOI: 10.3973/j.issn.2096-4498.2024.11.013

• 研究与探索 • 上一篇    下一篇

基于Stacking集成学习的盾构掘进地表沉降预测方法

郑一鸣1, 李刚2, 季军3, 张孟喜1, *, 吴惠明2   

  1. (1. 上海大学力学与工程科学学院, 上海 200444 2. 上海隧道工程有限公司,上海 200032; 3. 上海城投水务工程项目管理有限公司, 上海 201103)

  • 出版日期:2024-11-20 发布日期:2024-12-12
  • 作者简介:郑一鸣(2000—),男,浙江温州人,上海大学土木水利专业在读硕士,研究方向为隧道及地下工程。E-mail: ym2022@shu.edu.cn。*通信作者: 张孟喜, E-mail: mxzhang@i.shu.edu.cn。

Surface Settlement Prediction Method for Shield Tunneling Based on Stacking Ensemble Learning

ZHENG Yiming1, LI Gang2, JI Jun3, ZHANG Mengxi1, *, WU Huiming2   

  1. (1. School of Mechanics and Engineering Science, Shanghai University, Shanghai 200444, China; 2. Shanghai Tunnel Engineering Co., Ltd., Shanghai 200032, China; 3. Shanghai Urban Investment Waterworks Engineering Project Management Co., Ltd., Shanghai 201103, China)

  • Online:2024-11-20 Published:2024-12-12

摘要: 为提高盾构施工中地表最终沉降预测模型的准确性和泛化性,结合主成分分析(PCA)和多层堆叠集成算法(Multi-layer Stacking)提出PCA-Stacking盾构掘进地表沉降预测方法。该方法利用PCA算法对盾构掘进过程中产生的大量数据进行处理,以减少特征维度并提取关键信息; 此外,通过多层Stacking算法将多个异质模型进行融合,在提高模型预测性能的同时避免子模型间的优化比选。依托上海市北横通道超大直径盾构隧道工程,对盾构工程中的多源数据进行处理,对比PCA处理前后Stacking模型的性能,并将PCA-Stacking模型与RFXGBoost模型进行对比。研究结果表明: 1PCA处理前后,Stacking模型的R2分别为0.7920.831PCAStacking模型性能有一定提高; 2)超参数优化后,RFXGBoostR2分别为0.7480.612,其性能弱于未进行超参数优化的PCA-Stacking 3PCA-Stacking模型对地表隆起、沉降变化高度都具有良好的预测能力; 4)在盾构掘进地表沉降预测方面,异质子模型的PCA-Stacking算法优于同质子模型的集成算法。

关键词: 盾构隧道, 地表沉降, 机器学习, Stacking集成学习, 主成分分析(PCA

Abstract: To enhance the accuracy and generalization of surface final settlement prediction models in shield tunneling, the authors establish a principal component analysis (PCA)-stacking model for surface settlement prediction, integrating the PCA method with a multi-layer Stacking ensemble algorithm. The PCA algorithm processes the extensive data generated during shield tunneling, reducing feature dimensions and extracting critical information. Simultaneously, the multi-layer Stacking algorithm integrates multiple heterogeneous models, improving predictive performance while avoiding optimization comparisons among sub-models. Based on a case study of an ultra-large diameter shield tunnel from the Shanghai Beiheng tunnel project, multi-source data from shield tunneling engineering are analyzed. The performance of the Stacking model before and after PCA processing is compared, and the PCA-Stacking model is benchmarked against random forests (RF) and extreme gradient boosting (XGBoost) models. The research findings are as follows: (1) The R2 values of the Stacking model before and after PCA processing are 0.792 and 0.831, respectively, demonstrating that PCA improves the stacking models performance. (2) After hyperparameter optimization, the Rvalues for the RF and XGBoost models are 0.748 and 0.612, respectively, showing inferior performance compared to the PCA-Stacking model without hyperparameter optimization. (3) The PCA-Stacking model exhibits robust predictive capabilities for both ground uplift and subsidence variations. (4) The PCA-Stacking algorithm, employing heterogeneous sub-models, outperforms ensemble algorithms based on homogeneous sub-models in predicting ground settlement during shield tunneling.

Key words: shield tunnel, surface settlement, machine learning, Stacking ensemble learning, principal component analysis