• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (11): 2063-2075.DOI: 10.3973/j.issn.2096-4498.2025.11.008

• 研究与探索 • 上一篇    下一篇

基于CT扫描的高吸能混凝土力学本构与吸能性能

温家馨1, 2, 李化建1, 2, *, 石贺男2, 3, 李良顺2, 3, 董昊良2, 3   

  1. (1. 中国铁道科学研究院集团有限公司铁道建筑研究所, 北京 100081; 2. 高速铁路轨道系统全国重点实验室, 北京 100081; 3. 中国铁道科学研究院研究生部, 北京 100081)
  • 出版日期:2025-11-20 发布日期:2025-11-20
  • 作者简介:温家馨(1995—), 男, 内蒙古呼和浩特人,2025年毕业于中国铁道科学研究院,桥梁与隧道工程专业,博士,助理研究员,从事高铁土木工程材料及其耐久性相关研究工作。E-mai1: jasonwen_86@163.com。*通信作者: 李化建, E-mai1: chinasai1or@163.com。

Mechanical Constitutive Model and Energy Absorption Performance of High-Energy-Absorbing Concrete Based on Computed Tomography Scanning

WEN Jiaxin1, 2, LI Huajian1, 2, *, SHI Henan2, 3, LI Liangshun2, 3, DONG Haoliang2, 3   

  1. (1. Railway Engineering Research Institute, China Academy of Railway Science Co., Ltd., Beijing 100081, China; 2. State Key Laboratory for Track Technology of High-speed Railway, Beijing 100081, China; 3. Graduate School, China Academy of Railway Science, Beijing 100081, China)
  • Online:2025-11-20 Published:2025-11-20

摘要: 针对高地应力下软岩隧道变形显著、缺少高吸能隧道缓冲层材料的工程问题,以水性环氧树脂与乳化沥青为胶结基材、以发泡聚苯乙烯(EPS)颗粒为吸能骨料,研发出满足隧道缓冲层功能需求的高吸能混凝土。分析压缩荷载下高吸能混凝土的力学性能,结合CT扫描与三维重构技术分析高吸能混凝土的吸能机制。结果表明: 1)压缩荷载下高吸能混凝土的应力-应变曲线呈现弹性、平台、强化、破坏4个阶段的发展特点,平台应力为1.189~1.624 MPa,弹性模量为17.89~24.50 MPa,最大极限压应变为0.6; 2)多阶段的吸能特征使高吸能混凝土具有良好的吸能性能,最大单位体积吸能达到0.84 J/cm3,其中平台吸能阶段吸能占比最大; 3)CT扫描结果表明,高吸能混凝土中EPS颗粒在密实变形及其连通性的发展主导其变形吸能性能,机制砂颗粒相互搭接形成的骨架结构也使其力学性能有显著提升; 4)建立基于Gibson-Ashby多孔介质模型的细观变形单元,获得压缩荷载下高吸能混凝土力学本构模型。

关键词: 软岩隧道大变形, 高吸能混凝土, CT扫描, 三维重构, 吸能机制, 力学本构

Abstract: Owing to a lack of high-energy-absorbing buffer materials, deformation of soft rock tunnels under high ground stress is severe. Therefore, a high-energy-absorbing concrete was developed using waterborne epoxy resin and emulsified asphalt as the binder material and expanded polystyrene (EPS) particles as the energy-absorbing aggregate, meeting the functional requirements of the buffer layer. The mechanical properties of this concrete under uniaxial compression were experimentally examined, and its energy absorption mechanism was elucidated through computed tomography (CT) scanning and three-dimensional reconstruction. The main findings are as follows: (1) The stressstrain curves exhibit elastic, plateau, densification, and failure stages. The plateau stress ranges from 1.189 to 1.624 MPa, the elastic modulus ranges from 17.89 to 24.50 MPa, and the ultimate compressive strain reaches 0.6. (2) The multistage energy absorption characteristics result in effective energy absorption performance of the concrete, with a maximum energy absorption per unit volume of 0.84 J/cm3, among which the plateau stage exhibits the largest proportion of energy absorption. (3) CT scanning results reveal that the deformation and energy absorption performance of the concrete are primarily determined by the densification deformation and connectivity development of EPS particles, and the skeleton structure formed by manufactured sand particles substantially improves its mechanical properties. (4) A mesoscopic deformation element based on the Gibson-Ashby porous medium model under uniaxial compression was established, and a mechanical constitutive model for the concrete was obtained.

Key words: large deformation in soft rock tunnels, high-energy-absorbing concrete, CT scanning, three-dimensional reconstruction, energy absorption mechanism, mechanical constitutive model