• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (S2): 88-96.DOI: 10.3973/j.issn.2096-4498.2025.S2.007

• 研究与探索 • 上一篇    下一篇

高地温隧道机械制冷与压入式通风协同降温效果及输出参数优化

周军伟   

  1. (川藏铁路有限公司, 四川 成都 610045)
  • 出版日期:2025-12-20 发布日期:2025-12-20
  • 作者简介:周军伟(1977—),男,陕西岐山人,1997年毕业于石家庄铁道学院,工程管理专业,本科,正高级工程师,主要从事高速铁路建设管理及技术研究工作。 E-mail: zhoujunweidangyan@163.com。

Synergistic Cooling Effect and Output Parameter Optimization of Mechanical Refrigeration With Forced Ventilation in High Geothermal Tunnels

ZHOU Junwei   

  1. (Sichuan-Tibet Railway Co., Ltd., Chengdu 610045, Sichuan, China)
  • Online:2025-12-20 Published:2025-12-20

摘要: 针对高地温隧道施工过程中通风降温效果有限的问题,探究机械制冷与压入式通风系统协同作用下的降温机制及参数优化方法。以某典型高地温隧道工程为对象,结合现场测试与数值模拟,分析协同降温系统中送风温度、送风风量对掌子面环境温度的影响规律。首先,开展掌子面及隧道内多断面的环境温度监测,获取制冷机组运行前后温度分布及降温幅度;然后,基于非稳态流-热耦合模型构建多物理场数值模拟框架,系统评估不同制冷参数组合下的温度响应,拟合掌子面温度与送风风量、送风温度之间的定量关系。研究发现: 1)采用新型机械制冷机组可显著改善隧道热环境,掌子面区域温度由38.6 ℃降至29.5 ℃,降幅为23.6%;隧道整体平均降温7.0 ℃,降幅为18.4%。2)制冷机组的输出风量V与掌子面温度Ta呈上凹型二次函数降低关系,制冷机组的输出风温TTa呈线性负相关。3)基于高地温隧道控温要求,提出制冷机组输出风量V、输出风温T的参数组合,可稳定控制掌子面温度≤28 ℃,即当V=10 m3/s时,T≤14.7 ℃;当T=15 ℃时,V≥11.4 m3/s。综合考虑制冷效果和能源效率,确定制冷机组的最佳运行参数为T=18.8 ℃和V=30 m3/s。

关键词: 高地温隧道, 机械制冷, 通风传热, 降温参数

Abstract: To address the limited effectiveness of ventilation-based cooling during high geothermal tunnel construction, the author investigates the cooling mechanism and parameter optimization strategy under the combined operation of mechanical refrigeration and tunnel ventilation systems. A case study is conducted on a representative high-temperature tunnel project, and the influence of supply air temperature and airflow rate on the environmental temperature at the tunnel face is analyzed based on field measurements and numerical simulations. First, environmental temperature and humidity are monitored at the tunnel face and multiple cross-sections, capturing the temperature distribution and cooling magnitude before and after the operation of the refrigeration units. Then, a multi-physics numerical simulation framework based on a transient flow-thermal coupling model is established to systematically evaluate the temperature response under different cooling parameter combinations. Quantitative relationships between the tunnel face temperature and the supply air velocity and temperature are subsequently derived. Findings are as follows: (1) The new mechanical refrigeration units considerably improves the thermal environment of the tunnel, with the temperature in the tunnel face area dropping from 38.6 ℃ to 29.5 ℃ (a decrease of 23.6%), and the overall average temperature of the tunnel decreasing by 7. 0 ℃ (a decrease of 18.4%). (2) The output air volume (V) of the refrigeration unit decreases in an upward-concave quadratic function relationship with the temperature (Ta) of the tunnel face, while the output air temperature (T) of the refrigeration unit is linearly negatively correlated with Ta. (3) Based on the temperature control requirements of high-temperature tunnels, a parameter combination of the output air volume and air temperature of the refrigeration unit is proposed, which can stably control the tunnel face temperature to≤28 ℃, that is, when V=10 m3/s, T≤14.7 ℃; when T=15 ℃, ≥11.4 m3/s. Taking into account the cooling effect and energy efficiency, the optimal operating parameters of the refrigeration unit are determined to be T=18.8 ℃ and =30 m3/s.

Key words: high geothermal tunnel, mechanical refrigeration, ventilation heat transfer, cooling parameters