• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (S2): 140-149.DOI: 10.3973/j.issn.2096-4498.2025.S2.012

• 研究与探索 • 上一篇    下一篇

基于XGB模型的洞渣粗骨料压碎指标预测方法

易定达1, 戴润军1, 李志军1, 李浩年2, 严丁辉2, 李福海2, *   

  1. (1. 中铁隧道局集团有限公司, 广东 广州 511458; 2. 西南交通大学土木工程学院, 四川 成都 611752)
  • 出版日期:2025-12-20 发布日期:2025-12-20
  • 作者简介:易定达(1980—),男,湖南涟源人,2019年毕业于郑州大学,土木工程专业,本科,高级工程师,现从事隧道与地下工程施工技术工作。E-mail: 14861522@qq.com。*通信作者: 李福海, E-mail: lifuhai2007@home.swjtu.edu.cn。

Prediction Method of Crushing Index of Tunnel Slag Coarse Aggregate Based on Extreme Gradient Boosting Model

YI Dingda1, DAI Runjun1, LI Zhijun1, LI Haonian2, YAN Dinghui2, LI Fuhai2, *   

  1. (1. China Railway Tunnel Group Co., Ltd., Guangzhou 511458, Guangdong, China; 2. School of Civil Engineering, Southwest Jiaotong University, Chengdu 611752, Sichuan, China)
  • Online:2025-12-20 Published:2025-12-20

摘要: 为解决隧道洞渣作为骨料母岩时的适用性判别难题,运用梯度提升(GB)、极端梯度提升(XGB)、支持向量回归(SVR)和随机森林(RF)4种机器学习模型提出以洞渣母岩性能为输入端的洞渣粗骨料压碎指标预测方法,并开展洞渣母岩特征重要性分析及其对压碎指标的影响规律分析。研究结果表明: 1)XGB模型的预测效果最佳,在测试集上决定系数(R2)和均方根误差(ERMS)的平均值分别为0.90和3.51%。2)洞渣母岩各性能对压碎指标的影响程度排序为饱和抗压强度(重要度量值0.33)>块体干密度(0.28)>吸水率(0.05)>软化系数(0.04)>云母质量分数(0.01)>硫化物及硫酸盐质量分数(0)。3)洞渣母岩强度的提升可增强洞渣粗骨料的抗压碎能力;高块体干密度反映洞渣母岩高硬度、低孔隙率及致密结构,可提升洞渣粗骨料抗压碎能力;高吸水率洞渣母岩因内部孔隙多,易降低洞渣粗骨料抗压碎能力;高软化系数的洞渣母岩制备的粗骨料在水作用下结构和强度下降幅度较小,具有更优的抗压碎性能。4)洞渣母岩中的云母和硫化物及硫酸盐虽对压碎指标影响程度较低,但会削弱混凝土的整体性能。

关键词: 隧道洞渣, 洞渣粗骨料, 压碎指标, 极端梯度提升模型

Abstract: To determine the feasibility of parent rock for aggregates using tunnel slag, a method is proposed for predicting the crushing index of coarse aggregate from tunnel slag using four machine learning models: gradient boosting (GB), extreme GB (XGB), support vector regression, and random forest, with the parent rock properties of the slag as inputs. Additionally, an analysis of the importance of the parent rock characteristics of the slag and their influence patterns on the crushing index is conducted. The results show that: (1) The XGB model exhibits the best prediction effect, with an average R2  of 0.90 and root mean square error of 3.51% on the test set. (2) The impact of parent-rock properties of tunnel slag on the crushing index ranges from highest to lowest as follows: saturated uniaxial compressive strength (importance value 0.33), bulk dry density (0.28), water absorption (0.05), softening coefficient (0.04), mica content (0.01), and sulfide/sulfate content (0). (3) Increasing the strength of parent rock boosts the anticrushing ability of coarse aggregate from tunnel slag. High bulk density signifies hard, low-porosity rock with a dense structure, enhancing this ability. High water absorption, due to more pores in the rock, reduces the anti-crushing property. A high softening coefficient means less strength loss in water, indicating better anti-crushing performance. (4) Although mica and sulfides/sulfates in parent rock have minor effects on the crushing index, they can weaken the overall performance of concrete.

Key words: tunnel slag, coarse aggregate, crushing index, extreme gradient boosting model