• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2026, Vol. 46 ›› Issue (1): 1-34.DOI: 10.3973/j.issn.2096-4498.2026.01.001

• 综述 • 上一篇    下一篇

Application of Transparent Soil Materials in Geotechnical Tunnel Model Tests(透明土材料在隧道岩土工程模型试验中的应用综述)

仉文岗1,2, 严玉苗1, 吴志昊1, 3, 何奇海1, 3, 孙伟鑫1,4, *, 张煌1, 齐如见5, 陈真5
  

  1. (1. 重庆大学土木工程学院, 重庆 400045; 2. 重庆大学 山区土木工程安全与韧性全国重点实验室,重庆 400045; 3. 中铁二局集团有限公司, 四川 成都 610031; 4. 重庆大学航空航天学院, 重庆 400044;5. 中铁隧道集团一处有限公司, 重庆 401123)
  • 出版日期:2026-01-20 发布日期:2026-01-20
  • 作者简介:仉文岗(1983—),男,河北沧州人,2013年毕业于新加坡南洋理工大学,岩土工程专业,博士,教授,现从事城市地下工程和岩土大数据方面的研究工作。 E-mail: zhangwg@cqu.edu.cn。通信作者: 孙伟鑫, E-mail: weixins@cqu.edu.cn。

Application of Transparent Soil Materials in Geotechnical Tunnel Model Tests

ZHANG Wengang1, 2, YAN Yumiao1, WU Zhihao1, 3, HE Qihai1, 3, SUN Weixin1, 4, *, ZHANG Huang1, QI Rujian5, CHEN Zhen5#br#   

  1. (1. School of Civil Engineering, Chongqing University, Chongqing 400045, China; 2. State Key Laboratory of Safety and Resilience of Civil Engineering in Mountain Area, Chongqing 400045, China; 3. China Railway No. 2 Engineering Group Co., Ltd., Chengdu 610031, Sichuan, China; 4. College of Aerospace Engineering, Chongqing University, Chongqing 400044, China; 5. The First Engineering Co., Ltd. of China Railway Tunnel Group, Chongqing 401123, China)
  • Online:2026-01-20 Published:2026-01-20

摘要: 透明土技术为隧道岩土工程模型试验提供了可视化介质与方法,但既有研究多聚焦于单一材料研发或特定工况适配,系统梳理与总览性说明仍显不足。围绕“材料—光学—试验应用—评估”4个维度,对以透明土材料为核心的隧道工程模型试验技术进行系统阐述: 1)材料层面,梳理透明土材料研发的演进脉络,归纳砂土型、黏土型及类岩型透明土材料的组分特征及其物理力学参数匹配原则,提炼材料制备与调参的关键要素。2)光学层面,阐明透明土模型试验的光学基础,从透明土透明度、模型箱尺寸、激光器参数、光学测量技术与人工制斑技术等试验重要组分进行归纳,并比较DIC/PIV等测量方法的适用区间。3)试验层面,综合梳理透明土材料在隧道岩土工程模型试验中的典型应用实例,涵盖隧道开挖面稳定性、注浆扩散与施工诱发地层变形等研究,并提取可迁移应用的试验规律。4)评估与展望方面,指出透明土材料等效性的局限、透光性对模型尺度的约束、制斑稳定性不足以及试验系统成本较高等可能存在的发展问题;同时,提出适用于透明土材料的反应性评价指标的“等效性校准三步骤”、光学测量技术选用参考及新型透明土材料开发等实用方法与建议,以拓展其在应对前所未有之工况时的工程可比性与类推性。

关键词: 透明土, 隧道工程, 物理模型试验, 粒子图像测速(PIV), 数字图像相关(DIC), 制斑技术, 地层位移场

Abstract: Transparent soil techniques provide a visual medium and experimental approach for the testing of geotechnical tunnel models. However, most existing studies focus on individual material development or adaptations to specific working conditions, with systematic synthesis and comprehensive overviews remaining limited. This review discusses progress in transparent soil-based tunnel model testing from the perspectives of materials, optics, experimental applications, and evaluation. From the material perspective, the authors review the evolutionary development of transparent soil materials and summarize the compositional characteristics and physicomechanical parameter matching principles of sand-type, clay-type, and rock-like transparent soils, emphasizing key issues related to material preparation and parameter adjustment. From the perspective of optics, the authors clarify the optical fundamentals of transparent soil model testing and discuss core components such as transparency requirements, model box size constraints, laser parameter selection, optical measurement techniques, and artificial speckle preparation while comparing the applicable ranges of digital image correlation and particle image velocimetry. From the experimental perspective, the authors systematically review representative applications of transparent soil materials in tunnel geotechnical model tests. These applications cover tunnel face stability, grouting diffusion, and construction-induced ground deformation. On this basis, experimental observations with potential transferability are identified. From the perspective of evaluation and outlook, several limitations are addressed, including constraints related to material equivalence, restrictions on model scale imposed by optical path length, insufficient speckle stability, and the high cost of experimental systems. Practical approaches to mitigating these problems are proposed (such as three-step equivalence calibration based on reactivity evaluation, guidance for selecting optical measurement techniques, and directions for the development of new transparent soil materials) to enhance engineering comparability and extrapolation capability under unprecedented working conditions.

Key words: transparent soil, tunnel engineering, physical modeling test, particle image velocimetry, digital image correlation, speckle pattern preparation, stratum displacement field