• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2026, Vol. 46 ›› Issue (1): 35-45.DOI: 10.3973/j.issn.2096-4498.2026.01.002

• 研究与探索 • 上一篇    下一篇

深埋高水压隧道预注浆加固围岩弹塑性解析解及围岩特征曲线

周晓敏1, 刘勇1, 马文著2, 3, 4, *, 宋宜祥5, 刘书杰1, 张松1, 张基伟1   

  1. (1. 北京科技大学未来城市学院, 北京 100083; 2. 同济大学土木工程学院, 上海 200092; 3. 中国建筑第八工程局有限公司, 上海 200120; 4. 中建八局天津建设工程有限公司, 天津 300450; 5. 河北工业大学土木与交通学院, 天津 300401)
  • 出版日期:2026-01-20 发布日期:2026-01-20
  • 作者简介:周晓敏(1963—),男,江苏常州人,2004年毕业于北京交通大学,岩土工程专业,博士,教授,从事地下工程特殊施工及支护理论、数值仿真等研究工作。E-mail: groupzhou@163.com。*通信作者: 马文著, E-mail: mwz19940302@163.com。

Elastoplastic Analysis and Ground Reaction Curve of Pregrouting Reinforced Surrounding Rocks in Deep Tunnels With High Water Pressure

ZHOU Xiaomin1, LIU Yong1, MA Wenzhu2, 3, 4, *, SONG Yixiang5, LIU Shujie1, ZHANG Song1, ZHANG Jiwei1   

  1. (1. School of Future Cities, University of Science and Technology Beijing, Beijing 100083, China; 2. College of Civil Engineering, Tongji University, Shanghai 200092, China; 3. China Construction Eighth Engineering Division Co., Ltd., Shanghai 200120, China; 4. China Construction Eighth Engineering Division Tianjin Construction Engineering Co., Ltd., Tianjin 300450, China; 5. School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin 300401, China)
  • Online:2026-01-20 Published:2026-01-20

摘要: 为解决深埋高水压隧道预注浆加固设计中难以量化考虑帷幕“抗渗+承载”双重作用的理论难题,基于非达西渗流条件,建立考虑注浆帷幕的流固耦合弹塑性力学模型,推导围岩特征曲线(ground reaction curve,GRC)与塑性区半径的解析解,采用有限元模拟对计算结果进行验证,并进一步讨论注浆加固参数对GRC演化规律及塑性区半径的影响。结果表明: 1)增大注浆帷幕厚度与降低帷幕渗透系数,可明显降低隧道涌水量,非达西效应对渗流防控效果具有显著削弱作用。2)与卡斯特纳解相比,有、无渗流2种情况下预注浆使弹塑性分界点的围岩内缘径向位移大幅减小。3)随着注浆帷幕厚度增大,注浆抗渗加固效率降低,因此应避免注浆帷幕设计过厚,造成浪费,其经济加固厚度阈值约为1.5倍开挖半径。4)剪切模量增大使弹塑性分界点的围岩内缘径向位移减小,GRC弹性段围岩刚度增强;注浆体黏聚力与内摩擦角增加导致维持围岩弹性所需的支护力大幅降低; 开挖半径增大将加剧围岩变形并提高支护需求; 剪胀角主要影响塑性阶段变形。

关键词: 深埋高水压隧道, 预注浆加固, 围岩特征曲线, 非达西渗流, 弹塑性解析解

Abstract: The dual effects of seepage control and load bearing of the grouting curtains in pregrouting reinforcements of deep tunnels are difficult to quantify under high water-pressure conditions. To address this theoretical challenge, a fluid-solid coupled elastoplastic model incorporating grouting curtains under non-Darcy flow conditions is constructed. The analytical solutions for the ground reaction curve (GRC) and plastic-zone radius are then derived and validated through finite-element simulations. Finally, the influence of the grouting parameters on GRC evolution is systematically investigated. The results demonstrate the following: (1) Increasing grouting curtain thickness and reducing its permeability coefficient notably decrease tunnel water inflow, while non-Darcy effects substantially compromise seepage control efficiency. (2) Compared with Kastner’s solution, pregrouting dramatically reduces the radial displacement of surrounding rock at the elastoplastic interface under seepage and non-seepage conditions. (3) The anti-seepage efficiency decreases with increasing curtain thickness, suggesting an economic threshold of ~1.5 times the tunnel radius to avoid overdesign. (4) Increasing the shear modulus reduces elastoplastic boundary displacement and increases rock stiffness in the GRC elastic segment. Increasing the cohesion and internal friction angle dramatically decreases the required support pressure to maintain an elastic state. (5) A larger excavation radius intensifies deformation and support demand, while the shear angle primarily governs plastic deformation.

Key words: deep tunnel with high water pressure, pregrouting reinforcement, ground reaction curve, non-Darcy seepage, elastoplastic analytical solution