• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2026, Vol. 46 ›› Issue (1): 46-59.DOI: 10.3973/j.issn.2096-4498.2026.01.003

• 研究与探索 • 上一篇    下一篇

城市更新视角下地铁站域空间融合度评价——以青岛市市南区为例

赵景伟, 李浩琦, 孙雨*   

  1. (山东科技大学土木工程与建筑学院, 山东 青岛 266590)
  • 出版日期:2026-01-20 发布日期:2026-01-20
  • 作者简介:赵景伟(1973—),男,山东泰安人,1996年毕业于山东科技大学,岩土工程专业,博士,教授,现从事城市地下空间规划与设计的研究及教学工作。E-mail: zjwzbt@126.com。*通信作者: 孙雨, E-mail: skdsunyu@sdust.edu.cn。

Evaluation of Spatial Integration in Metro Station Areas From Perspective of Urban Renewal: A Case Study of Shinan District, Qingdao, China

ZHAO Jingwei, LI Haoqi, SUN Yu*   

  1. (College of Civil Engineering and Architecture, Shandong University of Science and Technology, Qingdao 266590, Shandong, China)
  • Online:2026-01-20 Published:2026-01-20

摘要: 为科学评估城市更新背景下地铁站域空间融合水平并识别其驱动机制,以青岛市市南区18个地铁站域为研究对象,构建包含节点、场所与空间3个维度共16项指标的融合度评价模型。基于实际路网数据,运用ArcGIS空间网络分析方法,以15 min步行阈值为标准划定各站域的空间范围;采用熵值法客观确定指标权重,并结合多元线性逐步回归分析揭示影响地铁站域空间融合水平的关键因子。对站域进行分类,依据《青岛市城市更新专项规划》将18个站域划分为改造提升型老旧住区站域(A类)、改造提升型历史城区站域(B类)、改造提升型中心城区站域(C类)及保护利用型老旧住区站域(D类)4类。评价结果表明,4类站域融合度平均得分存在显著差异: A类得分最高(0.478),B类(0.421)与D类(0.380)居中,C类得分最低(0.293)。在单一站域层面,青岛站融合度最高(0.837),宁夏路站最低(0.141)。权重分析显示,各类站域中影响融合度水平的关键因子各异: A类主要由“节点配置”与“连接效率”主导; B类主要由“换乘线路”和“功能密度”主导; C类主要由“换乘线路”主导; D类主要由“地上商业密度”和“功能密度”主导。回归分析进一步识别出“功能密度”“节点配置”和“集约性”是影响站域人流与空间融合水平的三大关键因子。

关键词: 城市更新, 地铁站域空间, 空间融合度, 熵值法, 评价模型

Abstract: The degree of spatial integration of metro station areas is evaluated within the context of urban renewal to identify driving mechanisms. A fusion-degree evaluation model is developed, consisting of 16 indicators within three dimensions (nodes, places, and spaces) based on 18 metro station areas in the Shinan district of Qingdao, China. Based on road network data, ArcGIS spatial network analysis is used to delineate the spatial scope of each station area with a 15-min walking distance threshold. The entropy method is used to objectively determine the weights of indicators, and the key factors influencing the degree of spatial integration of metro station areas are identified based on multiple linear stepwise regression analysis. The 18 station areas are classified into four categories—renovation and upgrading old residential areas (Category A), renovation and upgrading historical urban areas (Category B), renovation and upgrading central urban areas (Category C), and protection and utilization of old residential areas (Category D)—according to the Special Urban Renewal Plan of Qingdao City. The evaluation results indicate distinct differences in the average degrees of integration for the four station area types; Category A achieves the highest score (0.478), followed by Category B (0.421), Category D (0.380), and Category C (0.293). At the single-station level, Qingdao station has the highest integration degree (0.837), whereas the Ningxia Road station has the lowest (0.141). Weighting analysis reveals that the primary factors influencing the integration degree depend on the category type: node configuration and connection efficiency in Category A; transfer lines and functional density in Category B; transfer lines in Category C; and above-ground commercial density and functional density in Category D. Regression analysis results further identify functional density, node configuration, and intensity as the three primary factors influencing the degree of spatial integration of passenger flow in station areas.

Key words: urban renewal, metro station areas, spatial integration, entropy weight method, evaluation model