• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2024, Vol. 44 ›› Issue (5): 952-963.DOI: 10.3973/j.issn.2096-4498.2024.05.004

• 研究与探索 • 上一篇    下一篇

基于TBM掘进大数据和特征参数的引水隧洞塌方分析

裴成元1, 张云旆2, *, 刘军生1, 刘立鹏2, 曹瑞琅2   

  1. 1. 新疆水发建设集团有限公司, 新疆 乌鲁木齐 830000 2. 中国水利水电科学研究院, 北京 100048
  • 出版日期:2024-05-20 发布日期:2024-06-22
  • 作者简介:裴成元(1981—),男,新疆麦盖提人,2005年毕业于新疆农业大学,水利水电工程专业,本科,高级工程师,现从事水利工程建设管理等方面的研究工作。Email: 68017686@qq.com。 *通信作者: 张云旆, Email: zhangyp@iwhr.com。

Collapse Analysis in Water-Diversion Tunnels Based on Boring Big Data and Characteristic Parameters of Tunnel Boring Machine

PEI Chengyuan1, ZHANG Yunpei2, *, LIU Junsheng1, LIU Lipeng2, CAO Ruilang2   

  1. (1. Xinjiang Shuifa Construction Group Co., Ltd., Urumqi 830000, Xinjiang, China; 2. China Institute of Water Resources and Hydropower Research, Beijing 100048, China)
  • Online:2024-05-20 Published:2024-06-22

摘要: 针对TBM掘进过程中缺乏对围岩质量和塌方风险快捷、精准的预测预警方法,通过对TBM掘进大数据的深入挖掘,结合对实际工程塌方数据的剖析,提出潜在塌方风险的辅助判断依据。首先,对冗杂、连续的原始采集数据进行预处理,获取高质量的分析数据; 然后,基于参数的相关性分析提出围岩特征参数的计算方法,并围绕特征参数的合理性和适用性,通过理论推导、室内试验和现场原位掘进试验进行论证; 最后,结合实际的TBM塌方案例分析特征参数与围岩地质情况的相关性,提出塌方风险快速判断依据。结果表明: 基于TBM掘进数据获取的围岩特征参数在一定程度上反映了围岩质量,其数值与围岩质量正相关,当其数值显著降低、变幅超过69.2%时,当前的掘进循环极大可能存在塌方风险。

关键词: 引水隧洞, TBM; 大数据; 围岩质量; 特征参数; 塌方分析

Abstract: There is a lack of prediction and earlywarning methods for surrounding rock quality and collapse risk when using a tunnel boring machine(TBM). TBM boring big data are mined to address this, and the collapse data are analyzed to provide auxiliary judgment criteria for potential collapse risks. Redundant and continuous raw data are preprocessed to obtain highquality analytical data. A method for calculating characteristic rock parameters based on parameter correlation analysis is proposed. The rationality and applicability of these parameters are demonstrated through simplified theoretical derivations, indoor test results, and onsite boring tests. Finally, based on actual TBM collapse cases, the correlation between the characteristic parameters and surrounding rock geological conditions is analyzed, providing a basis for the rapid assessment of collapse risk. The results show that the characteristic parameters of the surrounding rock obtained from processing and analysis of the TBM boring data reflect the quality of the surrounding rock, and their values are positively correlated with the quality of the surrounding rock. When their values significantly decrease and the variation exceeds 69.2%, the current boring cycle is highly prone to potential collapse risk.

Key words: waterdiversion tunnel, tunnel boring machine, big data, surrounding rock quality, characteristic parameters; collapse analysis