• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (1): 171-178.DOI: 10.3973/j.issn.2096-4498.2025.01.014

• 地质与勘察 • 上一篇    下一篇

基于分布式声波光纤传感技术的岩土勘察方法研究

洪成雨1, 2, 3, 周子平1, 2, 3, *, 娄在明4, 郭震5, 谭俊卿5, 苏栋1, 2, 3   

  1. 1. 深圳大学土木与交通工程学院, 广东 深圳 518060 2. 极端环境岩土和隧道工程智能建养全国重点实验室, 广东 深圳 518060 3. 滨海城市韧性基础设施教育部重点实验室, 广东 深圳 518060 4. 中国电建市政建设集团有限公司, 天津 300384 5. 南方科技大学海洋科学与工程系, 广东 深圳 518055
  • 出版日期:2025-01-20 发布日期:2025-01-20
  • 作者简介:洪成雨(1982—),男,黑龙江哈尔滨人,2011年毕业于香港理工大学,岩土工程专业,博士,副教授,现从事岩土监测工作。E-mail: cyhong@szu.edu.cn。*通信作者: 周子平, E-mail: 1604694190@qq.com。

Geotechnical Investigation Method Based on Distributed Acoustic Sensors

HONG Chengyu1, 2, 3, ZHOU Ziping1, 2, 3, *, LOU Zaiming4, GUO Zhen5, TAN Junqing5, SU Dong1, 2, 3   

  1. (1. School of Civil and Traffic Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China; 2. National Key Laboratory for Intelligent Construction and Maintenance of Extreme Environmental Geotechnical and Tunnel Engineering, Shenzhen 518060, Guangdong, China; 3. Key Laboratory of Resilience Infrastructure in Coastal Cities, the Ministry of Education, Shenzhen 518060, Guangdong, China; 4. STECOL Corporation, Tianjin 300384, China; 5. Department of Marine Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China)
  • Online:2025-01-20 Published:2025-01-20

摘要: 为解决城市地铁盾构穿越不良地质勘探时的范围大、精细化困难等问题,依托惠深城际铁路工程,采用分布式声波光纤传感(distributed acoustic sensor, DAS)技术开展城市地下不良地质体大范围、高精度勘探方法研究。首先,研究背景噪声扩展空间自相关(extended spatial auto correlation, ESPAC)法对地下岩土体信息的反演成像理论方法,通过建立声波光纤动应变与地下剪切波速度场的关联性反演地下岩土体信息及赋存溶洞的位置与规模;然后,结合现场钻孔勘探与电磁波扫描获取的岩土体信息进行系统的对比验证。研究表明: DAS-ESPAC法清晰反演了地下40 m深范围内剪切波速场的分布特征,基于剪切波速场分布进一步反演了地下岩土体分层、类型、规模及空间分布,探明了粉质黏土与灰岩的分界界面,对于溶洞规模与分布反演误差达到1 m级,相关的勘探信息与钻探详勘数据、补勘数据、地球物理勘探数据吻合较好。

关键词: 分布式声波光纤传感技术, 扩展空间自相关法, 盾构隧道, 地质勘察, 地层信息, 溶洞

Abstract: To achieve largescale and high-precision geological exploration for urban metro shield construction, a case study is conducted on the Huizhou-Shenzhen intercity railway project using distributed acoustic sensor (DAS) technology. The authors explore methods for large-scale and detailed investigations of urban underground bad geological bodies. First, the extended spatial autocorrelation (ESPAC) method is applied to invert the properties of underground rock and soil masses. By establishing a correlation between the dynamic strain measured by acoustic fibers and the underground shear velocity field, information about underground rock and soil properties, as well as the location and size of karst caves are retrieved. The results are then systematically compared and verified using data obtained from drilling and electromagnetic wave scanning. The research findings indicate the following: The DAS-ESPAC method effectively maps the shear wave velocity field up to a depth of 40 m. It accurately identifies the stratification, type, size, and spatial distribution of underground rock and soil masses based on the shear wave velocity distribution. In addition, it verifies the boundary interface between silty clay and limestone. The method achieves an inversion error for karst cave size and distribution within 1 m. The exploration results align well with detailed drilling data, supplementary exploration data, and geophysical exploration data.

Key words: distributed acoustic sensor technology, spatial auto correlation, shield tunneling, geological investigation, strata information, karst cave