• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (1): 21-45.DOI: 10.3973/j.issn.2096-4498.2025.01.02

• 综述 • 上一篇    下一篇

TBM智能施工研究进展及展望

刘耀儒1, 侯少康2, 3, *, 魏芳2, 喻葭临2, 何伟2, 程立2, 焦鹏程2   

  1. 1. 清华大学水利水电工程系, 北京 100084 2. 水电水利规划设计总院, 北京 1001203. 中国水利水电科学研究院, 北京 100048
  • 出版日期:2025-01-20 发布日期:2024-01-20
  • 作者简介:刘耀儒(1974—),男,河北保定人,2004年毕业于清华大学,水利工程专业,博士,教授,主要从事水工结构和岩石力学及其智能建造方面的教学与研究工作。E-mail: liuyaoru@tsinghua.edu.cn。*通信作者: 侯少康, E-mail: housk@creei.cn。

State of the Art and Development Trends in Intelligent Construction of Tunnel Boring Machines

LIU Yaoru1, HOU Shaokang2, 3, *, WEI Fang2, YU Jialin2, HE Wei2, CHENG Li2, JIAO Pengcheng2   

  1. (1. Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China; 2. China Renewable Energy Engineering Institute, Beijing 100120, China; 3. China Institute of Water Resources and Hydropower, Beijing 100048, China)
  • Online:2025-01-20 Published:2024-01-20

摘要: TBM目前已集成上百个传感器和信息采集系统,可实时记录反映TBM施工状况及工作性能的运行数据,为开展数据驱动研究及实现TBM智能施工提供了良好的契机。在分析近年来TBM机器学习相关研究成果的基础上,综述TBM智能施工的研究进展。首先,以引松工程3标段为例,介绍TBM运行参数及运行数据的基本情况,分析TBM控制参数及掘进循环的各工作阶段划分; 然后,系统归纳TBM掘进过程隧道(洞)围岩智能感知、TBM掘进过程地质灾害预测预警、TBM掘进控制参数辅助决策3方面的研究进展; 最后,结合当前的技术水平和研究现状,探讨目前研究中存在的瓶颈,并提出对后续研究展望的建议,即多源数据互补信息的利用、专业机制知识-数据的融合驱动、新工程/工况应用场景的迁移学习是该领域有待进一步研究的方向。

关键词: TBM智能施工, 运行数据, 围岩感知, 地质灾害预测, 掘进参数优化

Abstract: Tunnel boring machines (TBMs) are equipped with hundreds of sensors and information acquisition systems, enabling real-time recording of operational data that reflects construction status and working performance. This provides a valuable opportunity for data-driven research and the advancement of intelligent TBM construction. The authors review recent research achievements in TBM data-driven machine learning and summarize key developments in TBM intelligent construction as follows: (1) Using TBM 3 bid section of the Songhua river water diversion project as a case study, the operational parameters and data of the TBM are introduced. TBM control parameters and the segmentation of each tunneling cycle stage are analyzed. (2) Recent advancements in three key aspects of intelligent TBM construction are systematically summarized, including intelligent perception of tunnel surrounding rock, prediction and early warning of geological hazards, and assisted decision-making of TBM tunneling parameters. (3) Based on the current technological landscape and research progress, existing research bottlenecks are discussed and future research directions are proposed, including: utilization of multi-source data for complementary information extraction, integration of domain knowledge with data-driven approaches, and application of transfer learning across different engineering projects and working conditions.

Key words: intelligent construction of tunnel boring machine, operation data, surrounding rock perception, geological hazard prediction, tunneling parameter optimization