• 中国科学引文数据库(CSCD)核心期刊
  • 中文核心期刊中文科技核心期刊
  • Scopus RCCSE中国权威学术期刊
  • 美国EBSCO数据库 俄罗斯《文摘杂志》
  • 《日本科学技术振兴机构数据库(中国)》
二维码

隧道建设(中英文) ›› 2024, Vol. 44 ›› Issue (4): 801-809.DOI: 10.3973/j.issn.2096-4498.2024.04.018

• 监控与维护 • 上一篇    下一篇

基于AHP-TRIZ的铁路运营隧道病害治理台车方案设计研究

李荆1, 2, 吴海龙1, 何前途3, 林春刚1, 2   

  1. 1. 中铁隧道勘察设计研究院有限公司, 广东 广州  511458 2. 广东省隧道结构智能监控与维护企业重点实验室, 广东 广州 511458 3. 中交一公局第二工程有限公司, 江苏 苏州 215000
  • 出版日期:2024-04-20 发布日期:2024-05-24
  • 作者简介:李荆(1990—),男,湖南邵阳人,2017年毕业于西南交通大学,机械工程专业,硕士,工程师,现从事隧道施工技术与装备、运营隧道病害整治技术与装备研究工作。Email: 15202836376@163.com。

Scheme Design of Trolley for Disease Control of Operational Railway Tunnel Based on Analytic Hierarchy ProcessTRIZ

LI Jing1, 2, WU Hailong1, HE Qiantu3, LIN Chungang1, 2   

  1. (1. China Railway Tunnel Consultants Co., Ltd., Guangzhou 511458, Guangdong, China; 2. Guangdong Provincial Key Laboratory of Intelligent Monitoring and Maintenance of Tunnel Structure, Guangzhou 511458, Guangdong, China; 3. No. 2 Engineering Ltd. of FHEC, CCCC, Suzhou 215000, Jiangsu, China)
  • Online:2024-04-20 Published:2024-05-24

摘要: 为解决现有技术中人工现场临时搭拆脚手架耗时费力、成本高、效率低的问题,采用AHPanalytic hierarchy process-TRIZ多理论集合方法,开展铁路运营隧道病害治理台车方案设计。基于层次分析法(AHP),梳理铁路运营隧道病害治理台车的设计要素,并对各设计要素的权重进行计算和排序,得出各设计要素权重由大到小排序为强度和刚度大>防溜车和应急回收>快速展开与收缩>防护栏>钢拱架机械化安装>快速进场和退场=非工作状态尺寸小>全断面作业平台>障碍物识别>自适应展开。根据权重大小排序,结合病害治理施工边界条件,确定防护栏、防溜车和应急回收、强度和刚度大、快速进场和退场、非工作状态尺寸小、快速展开与收缩、全断面作业平台、钢拱架机械化安装8个设计要素。依据AHP 评价结果,将设计要素两两对比,构建设计要素间的矛盾矩阵,对设计要素之间存在的物理矛盾和技术矛盾进行描述,借助TRIZ理论,明确解决上述矛盾的原理,进而设计台车方案,并基于台车方案研制设备样机。研究表明: 1)采用AHP法和TRIZ理论,能够对收集到的功能需求进行相对客观的分析,并能找到解决设计要素之间矛盾的方案; 2)基于AHP-TRIZ理论设计的铁路运营隧道病害治理台车具有较好的断面适应性。

关键词: 铁路运营隧道, 病害治理, 层次分析法(AHP), TRIZ, 台车方案

Abstract: Existing technologies for scaffold construction in operational railway tunnels present multiple disadvantages, including time consumption, high cost, and low construction efficiency. To address these issues, the analytic hierarchy process(AHP)TRIZ multitheory set method has been utilized to develop a disease treatment trolley scheme. Utilizing AHP, the critical design elements of the trolley are identified, and their weights are calculated and ranked as follows: B3>B2 > C3 > B1 > D2 > C1 = C2 > D1 > D4 > D3. Based on this ranking and the boundary conditions for disease control construction, eight design elements are prioritized: protective barriers, equipment antislip and emergency recovery, high strength and stiffness, rapid entry and exit, compact nonworking size, quick expansion and contraction, fullsection operational platform, and mechanized installation of steel arch frames. Through pairwise comparison of design elements and construction of a contradiction matrix, physical and technical contradictions are identified and addressed using TRIZ theory, which clarifies the principles for resolving these contradictions. Subsequently, a trolley scheme is designed, and a prototype is developed. These findings indicate that the AHPTRIZ method provides an objective analysis of functional requirements and effectively resolves conflicts between design elements, leading to a trolley that exhibits excellent crosssectional adaptability.

Key words:  operational railway tunnels, disease treatment, analytic hierarchy process, TRIZ, trolley scheme