• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2024, Vol. 44 ›› Issue (10): 1950-1960.DOI: 10.3973/j.issn.2096-4498.2024.10.004

• 结构病害诊治与韧性提升专题 • 上一篇    下一篇

碳纤维与玄武岩纤维网格增强ECC复合板的单轴抗拉性能研究

郭彩霞, 周博, 王国盛*, 路德春, 杜修力   

  1. (北京工业大学 城市与工程安全减灾教育部重点实验室, 北京 100124)

  • 出版日期:2024-10-20 发布日期:2024-11-12
  • 作者简介:郭彩霞(1984—),女,内蒙古乌兰察布人,2016年毕业于北京交通大学,土木工程专业,博士,正高级工程师,主要从事隧道及地下工程方向的科学研究与教学工作。 E-mail: guocaixia@bjut.edu.cn。*通信作者: 王国盛, E-mail: wangguosheng@bjut.edu.cn。

Uniaxial Tensile Performance of an Engineered Cementitious Composite Reinforced by Carbon and Basalt Textile Grids

GUO Caixia, ZHOU Bo, WANG Guosheng*, LU Dechun, DU Xiuli   

  1. (Key Laboratory of Urban Security and Disaster Engineering of the Ministry of Education, Beijing University of Technology, Beijing 100124, China)

  • Online:2024-10-20 Published:2024-11-12

摘要: 传统纤维网格增强水泥基复合材料以脆性材料为基体,开裂后裂缝宽度较大导致FRP网格强度无法充分发挥。为解决该问题,使用高延性水泥基复合材料(ECC)作为水泥基替代脆性材料,与FRP网格结合制备出适用于新土木的新型轻质高强材料纤维网格增强水泥基复合材料(FRCM),并通过对FRCM复合板进行单轴拉伸试验研究FRP类型及层数对纤维网格增强水泥基复合材料力学性能影响机制及其与ECC材料协同受力变形的能力。设计2种不同类型纤维网格(碳纤维CFRP与玄武岩纤维BFRP)增强的ECC复合材料拉伸试验,2种试验均考虑FRP网格层数和基体厚度对复合材料性能的影响。基于FRP网格和ECC材料本身的变形特点,探究FRP类型、层数和基体厚度对复合材料破坏模式、初始弹性模量、应变硬化模量、开裂应力、峰值应力和应变的影响规律。结果表明: 1)在试验工况下,随着网格层数从1层增加到6层,试件的抗拉强度均表现出先增大后减小的特性,在配置5层网格时强度最高; 2)基体厚度对试件弹性阶段的力学行为影响较小,但对应变硬化阶段的模量和峰值强度影响较大; 32FRP网格的强度和伸长率不同,且与短纤维的协同工作性能也存在差异,导致CFRP-ECCBFRP-ECC复合材料的拉伸性能存在较大差异。

关键词: FRP网格, 水泥基复合材料, 单轴拉伸试验, 变形行为, 强度特性

Abstract: Traditionally, fabric-reinforced cementitious matrices are brittle matrices, which creates notable wide cracks and, consequently, limits the effective utilization of the grid strength of fiber-reinforced polymers(FRPs). To overcome this challenge, an engineered cementitious composite(ECC) is introduced as a substitute for the brittle matrix. A novel light-weight and high-strength material suitable for modern civil engineering applications is developed by incorporating ECC into a fabric-reinforced cementitious matrix(FRCM) and FRP grids. The mechanical properties of the composite panels of the FRCM are examined via uniaxial tensile tests. The investigation focuses on exploring the impact of FRP types and layers on the mechanical characteristics of FRCM, as well as their capacity to interact synergistically with ECC materials during its deformation. Two types of ECC materials, reinforced with different fiber grids, namely, carbon-fiber-reinforced polymers and basalt-fiber-reinforced polymers, are formulated for tensile testing. The tests assess the effects of the FRP grid layers and the matrix thickness on the composite material properties. By analyzing the deformation characteristics of the FRP grids and ECC materials, the effects of the FRP types, layers, and matrix thickness on the failure mode, initial elastic modulus, strain hardening modulus, crack initiation stress, peak stress, and strain of the composite materials are investigated. Under the test conditions, the results reveal the following trend: the tensile strength of the specimens initially increases with an increasing number of grid layers, reaching a peak at five layers, and declines with further addition of layers. Thus, the optimum strength is achieved with five layers of grids. Although matrix thickness has little effect on the mechanical behavior of the specimens during the elastic stage, it notably affects the modulus and peak strength during the strainhardening stage. The strengths and elongation rates of the two types of FRP grids vary, and their synergistic interaction with short fiber varies as well.

Key words: fiber-reinforced polymer grid, engineered cementitious composites, uniaxial tensile test, deformation behavior, intensive property