• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2024, Vol. 44 ›› Issue (10): 1961-1970.DOI: 10.3973/j.issn.2096-4498.2024.10.005

• 结构病害诊治与韧性提升专题 • 上一篇    下一篇

基于改进YOLOv8算法的地铁隧道裂缝识别方法研究

鲍艳1, 梅崇斌1, 徐鹏宇2, 孙哲1, 温玉成1   

  1. (1. 北京工业大学建筑工程学院, 北京 100124 2. 北京城建勘测设计研究院有限责任公司, 北京 100101)
  • 出版日期:2024-10-20 发布日期:2024-11-12
  • 作者简介:鲍艳(1976—),女,山东烟台人,2006 年毕业于中国矿业大学(北京),地图制图学与地理信息系统专业,博士,副教授,主要从事重大基础设施智慧运维的研究工作。E-mail: baoy@bjut.edu.cn。

Crack Identification in Metro Tunnels Based on Improved YOLOv8 Algorithm

BAO Yan1, MEI Chongbin1, XU Pengyu2, SUN Zhe1, WEN Yucheng1   

  1. (1. College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China; 2. Beijing Urban Construction Exploration & Surveying Design Research Institute Co., Ltd., Beijing 100101, China)

  • Online:2024-10-20 Published:2024-11-12

摘要: 为解决地铁隧道裂缝智能识别困难,尤其针对地铁隧道裂缝检测天窗时间短、人工检测效率低、裂缝识别特征不明显、隧道内干扰物较多等问题,提出一种基于YOLOv8的改进算法——M-YOLOModified-YOLO),高效智能识别隧道裂缝。M-YOLO 算法运用全维度动态卷积取代传统卷积模块,能显著提高检测的准确性,避免模型参数膨胀的问题; 引入 C2fGC 模块对网络结构进行改进,构建新的特征提取与降维机制,增强高层次特征表示; 整合CBAM 注意力机制模块,强化对裂缝区域图像的特征学习与提取,减弱背景干扰,进而有效提升检测精度; 引入 WIOU 损失函数来调节几何因素的惩罚程度,提高模型的泛化能力,在低质量数据样本下的表现更为出色。试验结果表明,在地铁隧道裂缝识别的真实样本中,M-YOLO 算法的 PmAP(平均精度均值)高达 83.0%,较原模型提高了15.7%

关键词: 地铁隧道, 裂缝识别, 目标检测, 动态卷积, 注意力机制

Abstract: Intelligently identifying cracks in metro tunnels is challenging due to factors such as short skylight detection time, low manual detection efficiency, inconspicuous crack characteristics, and various disturbances in the tunnel. Therefore, a modified YOLO (M-YOLO) algorithm based on YOLOv8 is proposed to efficiently and intelligently identify cracks in tunnels. This algorithm adopts full-dimensional dynamic convolution to replace the traditional convolution module, remarkably improving the detection accuracy and avoiding model parameter expansion. The C2fGC module is introduced to improve the network structure, establishing a new feature extraction and dimensionality reduction mechanism and enhancing the high-level feature representation. The convolutional block attention module attention mechanism module is introduced to strengthen feature learning and extraction of crack region images and reduce background interference, effectively improving the detection accuracy. The WIOU loss function is introduced to adjust the degree of penalty of geometric factors, which improves the generalization ability of the model and helps it perform better even with low-quality data samples. The test results show that in the real samples, which are used for identifying cracks in a metro tunnel, the mean accuracy of the M-YOLO algorithm is as high as 83.0%, which indicates a significant improvement of 15.7% compared with the original model.

Key words: metro tunnel, crack identification, object detection, dynamic convolution, attention mechanism