• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (4): 844-851.DOI: 10.3973/j.issn.2096-4498.2025.04.017

• 施工机械 • 上一篇    下一篇

基于数字孪生技术的盾构刀盘应力实时分析

廖金军1, 于钟博123, *, 蒋海华1, 赵贵生1   

  1. 1. 中国铁建重工集团股份有限公司, 湖南 长沙 410100; 2. 中国铁建重工集团股份有限公司博士后工作站, 湖南 长沙〓410100; 3. 中南大学博士后流动站, 湖南 长沙 410083)

  • 出版日期:2025-04-20 发布日期:2025-04-20
  • 作者简介:廖金军(1982—),男,江西赣州人,2011年毕业于华中科技大学,机械电子工程专业,博士,教授级高级工程师,现从事地下工程装备研发、数字孪生关键技术研究工作。 E-mail: liaojinjun@crcc.com.cn。 *通信作者: 于钟博, E-mail: 304552294@qq.com。

Rapid Stress Response Analysis of Shield Cutterhead Based on Digital Twin Technology

LIAO Jinjun1, YU Zhongbo1, 2, 3, *, JIANG Haihua1, ZHAO Guisheng1   

  1. (1. China Railway Construction Heavy Industry Corporation Limited, Changsha 410100, Hunan, China; 2. Postdoctoral Workstation, China Railway Construction Heavy Industry Corporation Limited, Changsha 410100, Hunan, China; 3. Postdoctoral Workstation, Central South University, Changsha 410083, Hunan, China)

  • Online:2025-04-20 Published:2025-04-20

摘要: 盾构刀盘在隧道施工过程中的受力情况难以实时监测,导致滞后性分析和决策,无法及时提供工作状态的反馈。鉴于此,基于数字孪生技术,提出一种刀盘实时应力分析方法。首先,建立盾构刀盘实时应力分析的数字孪生架构,结合盾构的实际工作场景,对盾构刀盘进行有限元分析,获取刀盘在不同工况下的受力分布情况。其次,为提高计算效率和实时性,采用开源软件对全部节点数据进行提取和处理; 基于提取的节点应力数据,进一步建立刀盘的应力数据模型,并通过与实测数据对比,验证模型的准确性与可靠性。然后,在数据模型的基础上,进一步应用POD方法开展刀盘有限元模型的降阶技术研究。降阶技术能够在保证一定精度的前提下极大地减少计算量,实现对刀盘受力状态的快速获取与实时分析, 能够在不同施工工况下高效提取刀盘受力数据并进行动态监测。最后,将模型降阶技术集成到盾构数字孪生系统中,实现盾构刀盘的实时应力分析与可视化呈现,使数字孪生系统能够根据实际工作状态对刀盘的受力情况进行实时监控,并提供及时反馈。研究结果表明,所提出的方法在实际应用中具有较高的虚实一致性和可靠性,可为盾构的数字化监控提供有效支持。

关键词: 盾构刀盘, 数字孪生, 实时分析, 模型降阶, POD

Abstract: Real-time monitoring of force conditions on a shield cutterhead during tunneling is challenging, leading to delayed analysis, decision-making, and untimely feedback on the operational status. To address this challenge, a novel real-time stress analysis method for the cutterhead, which leverages digital twin technology, is proposed. First, a digital twin framework for real-time stress analysis of the shield cutterhead is established. Finite element analysis is then performed on the basis of actual working conditions to determine the stress distribution of the cutterhead under various working conditions. Second, to improve computational efficiency and real-time performance, open-source software is employed to extract and process all node data. Based on the extracted stress data, a stress data model for the cutterhead is developed, and its accuracy and reliability are validated through comparison with the measured data. Subsequently, proper orthogonal decomposition method is applied to investigate the model order reduction techniques for the cutterhead finite element model based on the developed data model. This order reduction technique significantly decreases the computational load while maintaining acceptable accuracy, enabling rapid acquisition and real-time analysis of the cutterheads stress state. The proposed method facilitates the efficient extraction of cutterhead stress data under different construction conditions, enabling dynamic monitoring. Finally, the research findings are integrated into the shields digital twin system, achieving real-time stress analysis and visualization of the cutterhead. The system can monitor the cutterheads stress conditions in real-time based on the actual working states and provide immediate feedback. The results demonstrate that the proposed method exhibits high virtual-physical consistency and reliability in practical applications, providing effective support for the digital monitoring of shields.

Key words: shield cutterhead, digital twins, real-time analysis, model order reduction, proper orthogonal decomposition method