• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (S1): 42-50.DOI: 10.3973/j.issn.2096-4498.2025.S1.005

• 研究与探索 • 上一篇    下一篇

基于跨孔声波探测技术的高地应力软岩隧道围岩扰动演化规律研究

杨朝帅1, 2, 3, 洪开荣1, 黄兴4, *, 刘永胜1   

  1. 1. 中铁隧道局集团有限公司, 广东 广州 511458 2. 广东省隧道结构智能监控与维护企业重点实验室,广东 广州 511458; 3. 中铁隧道勘察设计研究院有限公司, 广东 广州 511458;4. 中国科学院武汉岩土力学研究所 岩土力学与工程安全全国重点实验室, 湖北 武汉 430071)

  • 出版日期:2025-07-15 发布日期:2025-07-15
  • 作者简介:杨朝帅(1986—),男,河南洛阳人,2011年毕业于中国科学院武汉岩土力学研究所,岩土工程专业,硕士,高级工程师,现从事隧道与地下工程科研工作。 E-mail: 394343652@qq.com。 *通信作者: 黄兴, E-mail: xhuang@whrsm.ac.cn。

Disturbance Patterns of Surrounding Rock of Soft Rock Tunnels in High Geo-Stress Using Cross-Hole Sonic Wave Testing Method

YANG Chaoshuai1, 2, 3, HONG Kairong1,  HUANG Xing4, *, LIU Yongsheng1   

  1. (1. China Railway Tunnel Group Co., Ltd., Guangzhou 511458, Guangdong, China; 2. Guangdong Provincial Key Laboratory of Intelligent Monitoring and Maintenance of Tunnel Structure, Guangzhou 511458, Guangdong, China; 3. China Railway Tunnel Consultants Co., Ltd., Guangzhou 511458, Guangdong, China; 4. State Key Laboratory of Geomechanics and Geotechnical Engineering Safety, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, Hubei, China)

  • Online:2025-07-15 Published:2025-07-15

摘要: 为揭示深部高地应力软岩隧道在开挖支护过程中围岩扰动的演化规律,以渭武高速木寨岭隧道为依托工程,选取桩号ZK220+020~+090作为监测段,通过从先行隧道向后行隧道施打2个平行钻孔,采用跨孔声波探测技术,监测获取后行隧道围岩波速随径向深度和与掌子面距离的变化特征,反演分析隧道掘进过程围岩扰动时空演化和施工工序影响规律。研究结果表明: 1)在时间上,围岩受到大幅度扰动主要集中在开挖前5 d到开挖后10 d,反映出掌子面距离对围岩扰动的影响; 2)在空间上,软岩隧道中掌子面开挖支护对围岩的扰动在纵向的影响范围约为1.25D15 mD为隧道开挖直径)、径向约为2.08D25 m); 3)在不同施工工序作用下,根据对围岩的扰动程度可以将施工工序分为上台阶与中台阶、下台阶与仰拱开挖2个扰动阶段,其中,上、中台阶开挖阶段对围岩的扰动程度最大。

关键词: 高地应力软岩隧道, 围岩扰动, 跨孔声波, 时空演化规律, 施工工序, 双行隧道

Abstract: To examine the evolution patterns of surrounding rock disturbance during deeply-burial soft rock tunnels under high geo-stress, a case study is conducted on the Muzhailing tunnel of the Weiyuan-Wudu expressway. Section ZK220 + 020 to ZK220 + 090 is selected as the monitoring section. Two parallel boreholes are drilled from the previous tunnel to the subsequent tunnel to monitor the wave velocity variation characteristics of the surrounding rock in the subsequent tunnel with the radial depth and the distance from the tunnel face using cross-hole acoustic wave monitoring technique. Finally, the spatial-temporal evolution of surrounding rock disturbance during tunneling and the influence patterns of tunneling procedures are inversely analyzed. Main findings are as follows: (1) In terms of time, the surrounding rock is significantly disturbed primarily within 5 days before excavation to 10 days after excavation, which reflects the influence of tunnel face distance on the disturbance of surrounding rock. (2) In terms of space, the influence range of the tunnel face excavation and supporting on the surrounding rock in the longitudinal direction is approximately 1.25D(15 m, where D is the tunnel excavation diameter), and approximately 2.08D (25 m) in the radial direction. (3) Construction procedures can be divided into two stages: the upper and middle bench excavation, and the lower bench and invert excavation, according to the disturbance degree to the surrounding rock. The upper and middle bench excavation causes the largest disturbance to the surrounding rock.

Key words: soft rock tunnel with high geo-stress, surrounding rock disturbance, cross-hole sonic wave testing technology, spatial-temporal evolution pattern, tunneling procedure, double-track tunnel