• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (S1): 61-70.DOI: 10.3973/j.issn.2096-4498.2025.S1.007

• 研究与探索 • 上一篇    下一篇

超高水压盾构盾尾密封性能试验及数值计算研究

高文梁, 吴浩*, 闫阳, 张琳, 胡建立   

  1. (中铁工程装备集团有限公司, 河南 郑州 450016
  • 出版日期:2025-07-15 发布日期:2025-07-15
  • 作者简介:高文梁(1988—),男,河南新乡人,2014年毕业于湖南大学,车辆工程专业,硕士,高级工程师,主要从事盾构前沿技术研究工作。 E-mail: 250264986@qq.com。 *通信作者: 吴浩, E-mail: wuhaoneu@163.com。

Sealing Performance Test and Numerical Calculation of Shield Tail Under Ultra-High Water Pressure

GAO Wenliang, WU Hao*, YAN Yang, ZHANG Lin, HU Jianli   

  1. (China Railway Engineering Equipment Group Co., Ltd., Zhengzhou 450016, Henan, China)
  • Online:2025-07-15 Published:2025-07-15

摘要: 为研究2 000 kPa超高水压环境下盾构盾尾密封性能的关键影响因素及评价标准,设计一套模拟尾盾内径2 000 mm的盾尾密封试验台,并开展最高2 000 kPa的超高水压密封性能试验。通过分析盾尾密封原理,确定影响其性能的关键因素: 保持最大油脂压力高于外部环境泥水压力,确保油脂充分填充盾尾间隙并有效抵抗外部泥水侵入。基于此,对试验台的盾尾密封系统和压力监测控制系统进行针对性改进。试验台采用6道尾刷设计,可在高压环境下有效传递环境压力并保障尾刷钢板的安全性;同时,在油脂腔圆周方向设置10个压力监测点,实现对油脂腔内部压力变化的实时监测与反馈。通过建立压力递增的试验方案,以油脂腔内部压力波动不超过100 kPa为密封性能达标的评价标准,成功完成了2 000 kPa超高水压密封试验,验证了试验台设计的有效性。试验结果表明: 通过实时监测油脂腔各监测点压力变化并实时调节油脂腔压力,保持最大油脂腔压力高于外部水压50 kPa,可实现盾尾密封系统在2 000 kPa 超高水压环境下的有效密封。此外,基于对试验数据和试验现象的分析,建立数值计算模型,重点研究注脂口数量和注脂压力对油脂腔压力的影响,推导出多组经验公式,可用于评估油脂腔从注脂开始到压力稳定所需时间,以及稳定压力相对注脂压力的压降值。

关键词: 高水压环境, 盾构, 盾尾密封, 油脂腔数量, 油脂腔压力, 数值计算

Abstract: Herein, a shield tail seal test platform modeling tail shield with an inner diameter of 2 000 mm is designed to  conduct a test on the sealing performance of shield tail under ultra-high water pressure up to 2 000 kPa. Shield tail sealing principles are analyzed, revealing the primary operations guaranteeing its performance, which is maintaining the maximum grease pressure higher than the external environmental mud and water pressure to ensure that the grease fully fills the tail seal gap and effectively resists the intrusion of external mud and water. Based on this instruction, targeted improvements are made to the tail seal system and pressure monitoring control system of the test platform. This platform adopts six tail brushes which can effectively transmit environmental pressure under high-pressure conditions while ensuring the safety of the tail brush steel plates. Additionally, 10 pressure monitoring points are arranged circumferentially in the grease chamber, enabling realtime monitoring and feedback of internal pressure changes. By establishing a pressure-increasing test scheme and using a pressure fluctuation within the grease chamber not exceeding 100 kPa as the evaluation criterion for sealing performance, a sealing test under 2 000 kPa water pressure is successfully completed, and the effectiveness of the test platform is verified. The experimental results show that by monitoring and adjusting the grease chamber pressure in real time and maintaining the maximum grease chamber pressure of 50 kPa higher than the external water pressure can achieve effective sealing performance of the tail seal system under the 2 000 kPa ultra-high water pressure environment. Furthermore, based on the analysis of experimental data and phenomena, a numerical calculation model is established, focusing on the influence of the number of grease injection ports and injection pressure on the grease chamber pressure. Multiple sets of empirical formulas are derived, which can be used to evaluate the time required for the grease chamber pressure to stabilize from the start of grease injection and the pressure drop of the stable pressure relative to the injection pressure.

Key words: high water pressure environment, shield, shield tail seal, quantity of grease chamber, pressure of grease chamber, numerical calculation