• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (8): 1526-1537.DOI: 10.3973/j.issn.2096-4498.2025.08.010

• 研究与探索 • 上一篇    下一篇

长余辉自发光涂料最佳配比设计及隧道壁面敷设应用光环境模拟

陈龙1, 2, 冯小伟2, 3, 4, *, 胡学奎2, 3, 4, 何兆益5, 陈瑞璞1, 张海红2, 3, 4, 陈宏斌2, 3, 4
  

  1. 1. 山东交通学院交通土建工程学院, 山东 济南 250357; 2. 甘肃省交通科学研究院集团有限公司,甘肃 兰州 730030; 3. 甘肃省公路工程质量试验检测中心有限公司, 甘肃 兰州 730030;4. 甘肃省道路材料工程实验室, 甘肃 兰州 730030; 5. 重庆交通大学交通运输学院, 重庆 400074)
  • 出版日期:2025-08-20 发布日期:2025-08-20
  • 作者简介:陈龙(1989—),男,山东济南人,2019年毕业于重庆交通大学,交通运输工程专业,博士后,副教授,现从事道桥工程技术研发工作。 E-mail: hellolong0701@163.com。 *通信作者: 冯小伟, E-mail: 849981753@qq.com。

Optimized Mixing Ratio and Light Environment Simulation of Long Afterglow Self-Luminous Coatings for Tunnel Inner Wall

CHEN Long1, 2, FENG Xiaowei2, 3, 4, *, HU Xuekui2, 3, 4, HE Zhaoyi5, CHEN Ruipu1, ZHANG Haihong2, 3, 4, CHEN Hongbin2, 3, 4#br#   

  1. (1. School of Civil Engineering, Shandong Jiaotong University, Jinan 250357, Shandong, China; 2. Gansu Provincial Transportation Research Institute Group Co., Ltd., Lanzhou 730030, Gansu, China; 3. Gansu Highway Engineering Quality Test and Testing Center Co.,  Ltd., Lanzhou 730030, Gansu, China; 4. Gansu Provincial Road Materials Engineering Laboratory, Lanzhou 730030, Gansu, China; 5. College of Traffic and Transportation, Chongqing Jiaotong University, Chongqing 400074, China)
  • Online:2025-08-20 Published:2025-08-20

摘要: 为探究长余辉自发光涂料产品最佳配比及工程敷设应用的可行性,借助光学+力学综合体系共计24项性能指标,在数理统计检验基础上,联合信息熵权法IEW+灰色关联度法GRA+多准则排序法VIKOR进行产品方案设计,并对其在隧道壁面的光环境效应进行场景实测+仿真验证。结果表明: 1)影响色差值及磨耗质量损失等性能变化的因素,作用程度由大到小排序为荧光粉水平>填料水平>颜料水平; 影响照度、亮度、荧光寿命及抗滑、黏附等性能变化的因素,作用程度由大到小排序为荧光粉水平>颜料水平>填料水平。2)基于光学体系指标评价涂料产品性能时,方案⑨最优、方案⑦和方案⑧依次次之; 基于力学和综合体系指标评价涂料产品性能时,方案⑤最优、方案⑥和方案④依次次之。3)隧道壁面敷设长余辉自发光涂料时,行车区域内照度和亮度特征参数分别为敷设普通涂料的1.3~1.5倍和2.5~2.8倍,而照度和亮度在断面域内波动程度前者分别为后者类型的1.2倍和2.9倍。4)场景仿真模拟能够准确合理表征长余辉自发光涂料在隧道壁面实际敷设应用光学工况,该类型涂料产品可有效增强隧道行车光环境,但需注意断面域内光环境特征参数的差异性影响。

关键词: 隧道工程, 长余辉自发光涂料, 光学体系性能指标, 力学体系性能指标, 最佳配比, 隧道断面光环境模拟

Abstract: To determine the optimal mixing ratio and assess the engineering applicability of long afterglow self-luminous coatings, a comprehensive product design strategy is implemented. This approach employs information entropy weight, gray relational analysis, and the VIKOR method based on mathematical and statistical testing of 24 optical and mechanical parameters. Additionally, the lighting performance in tunnel cross-sections is evaluated through field tests and simulations. The results reveal the following: (1) For factors influencing color difference and wear quality loss, the descending order of significance is fluorescent powder content > filler content > pigment content. For factors influencing illumination, brightness, fluorescence lifetime, anti-slip, and adhesion performance, the descending order is fluorescent powder content > pigment content > filler content. (2) Based on optical characteristics, scheme 9 exhibits the best performance, followed by schemes 7 and 8. When evaluated using mechanical and comprehensive performance parameters, scheme 5 performs best, followed by schemes 6 and 4. (3) Compared with conventional coatings, the long afterglow self-luminous coating yields 1.3-1.5 times higher average illumination and 2.5-2.8 times higher brightness in the driving zone. However, it also results in 1.2 times greater illumination fluctuation and 2.9 times greater brightness fluctuation. (4) The simulation model accurately reflects actual engineering conditions, confirming that long afterglow self-luminous coatings effectively enhance tunnel lighting. Nevertheless, attention must be paid to the adverse effects of ambient light variation in the tunnel vicinity. 

Key words: tunnel engineering, long afterglow self-luminous coatings, optical performance parameters, mechanical performance parameters, optimal mixing ratio, tunnel cross-section light environment simulation