• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (8): 1538-1548.DOI: 10.3973/j.issn.2096-4498.2025.08.011

• 研究与探索 • 上一篇    下一篇

软岩大变形隧道让压耗能型波纹板接头构件轴压性能研究

李延喆1, 宋远1, 2, *, 安刚建3, 荣传新1, 冯守中1, 2, 黄明利4   

  1. (1. 安徽理工大学土木建筑学院, 安徽 淮南 232001; 2. 安徽中益新材料科技股份有限公司博士后科研工作站, 安徽 滁州  239500; 3. 中铁四局集团第四工程有限公司, 安徽 合肥 230012; 4. 北京交通大学土木建筑工程学院, 北京100044)
  • 出版日期:2025-08-20 发布日期:2025-08-20
  • 作者简介:李延喆(2001—),男,安徽合肥人,安徽理工大学土木工程专业在读硕士,研究方向为软岩大变形隧道支护。E-mail: liyanzhe0012@163.com。*通信作者: 宋远, E-mail: songyuan@aust.edu.cn。

Optimized Axial Compression Behavior of Yielding and Energy-Dissipating Corrugated Plate Joints in Large-Deformation Soft Rock Tunnels

LI Yanzhe1, SONG Yuan1, 2, *, AN Gangjian3, RONG Chuanxin1, FENG Shouzhong1, 2, HUANG Mingli4   

  1. (1. School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan 232001, Anhui, China; 2. Postdoctoral Research Workstation of Anhui Zhongyi New Materials Technology Co., Ltd., Chuzhou 239500, Anhui, China; 3. China Railway Fourth Engineering Group Fourth Engineering Co., Ltd., Hefei 230012, Anhui, China; 4. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China)
  • Online:2025-08-20 Published:2025-08-20

摘要: 针对软岩隧道流变性强、变形较大的工程问题,研发一种让压耗能型波纹板接头构件,并通过室内试验与数值模拟对其轴压性能进行研究。以波纹板厚度、高度及布置间距为自变量,通过设计7组不同构造参数构件的试验方案,分析不同参数对构件极限承载力、恒阻承载力及最大压缩量的影响机制。试验结果表明: 1)加载过程中构件经历了弹性变形阶段、屈服响应阶段、塑性发展阶段和密实强化阶段,并出现非协调变形与焊脚破坏现象。2)在隧道围岩变形量为100~270 mm时,波纹板高度宜采用200~300 mm;当围岩变形量达到270 mm以上时可增加波纹板高度至400 mm以上。3)从控制成本的角度考虑,在满足承载力需求的前提下,可将波纹板厚度控制在3~4 mm,布置间距在200 mm以内。数值模拟结果与试验结果基本一致,并发现波纹板中心弯折处与焊脚位置易出现应力集中,工程应用时宜保证焊接质量或增设加强肋等。通过三因素三水平正交试验方法对模拟参数进行敏感性分析,发现波纹板布置间距、厚度、高度分别对构件极限承载力、恒阻承载力、最大压缩量影响最大。

关键词: 软岩大变形隧道, 让压耗能型波纹板接头构件, 轴压性能, 室内试验, 数值模拟

Abstract: Soft rock tunnels are prone to significant rheological deformation, posing major engineering challenges. To address this, a yielding and energy-dissipating corrugated plate joint member is developed, and its axial compression performance is evaluated through laboratory experiments and numerical simulations. Seven specimen groups with varying corrugated plate thicknesses, heights, and layout spacings are designed to systematically analyze the influence mechanisms of these parameters on ultimate bearing capacity, constant-resistance bearing capacity, and maximum deformation. The test results show that the member undergoes four deformation stages during loading: elastic deformation, yielding, plastic development, and compaction strengthening, accompanied by non-uniform deformation and weld toe failure. For surrounding rock deformations of 100-270 mm, a corrugated plate height of 200-300 mm is recommended, whereas deformations exceeding 270 mm necessitate heights of 400 mm or more. To balance cost and performance, corrugated plate thickness can be limited to 3-4 mm and layout spacing to within 200 mm, provided that bearing capacity requirements are met. Numerical simulations align well with the experimental data and reveal stress concentrations at the central bends of the corrugated plates and at the weld toes, highlighting the need for enhanced welding quality or stiffeners in practical applications. Sensitivity analysis using a three-factor, three-level approach reveals that layout spacing, thickness, and height most strongly influence ultimate bearing capacity, constant-resistance bearing capacity, and maximum deformation, respectively.

Key words: large-deformation soft rock tunnel, yielding and energy-dissipating corrugated plate joint, axial compression, laboratory test, numerical simulation