• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (10): 1830-1842.DOI: 10.3973/j.issn.2096-4498.2025.10.003

• 研究与探索 • 上一篇    下一篇

分段相关数据清洗算法在盾构刀盘数据清洗中的应用

刘永胜1, 2, 3, 杨光1, 2, 3, 李伟森4, 宋宇博4, *   

  1. (1. 盾构及掘进技术国家重点实验室, 河南 郑州 450001; 2. 中铁隧道局集团有限公司, 广东 广州 511458; 3. 隧道掘进机及智能运维全国重点实验室, 河南 郑州 450001; 4. 兰州交通大学机电工程学院, 甘肃 兰州 730070)
  • 出版日期:2025-10-20 发布日期:2025-10-20
  • 作者简介:刘永胜(1980—),男,湖南湘乡人,2010年毕业于北京交通大学,桥梁与隧道工程专业,博士,正高级工程师,现从事隧道及地下工程技术管理与研究工作。 E-mail: liuyongsheng04@crecg.com。 *通信作者: 宋宇博, E-mail: songyubo@mail.lzjtu.cn。

Application of Segmented Correlation Data-Cleaning Algorithm in TBM Cutterhead Data Cleaning

LIU Yongsheng1, 2, 3, YANG Guang1, 2, 3, LI Weisen4, SONG Yubo4, *   

  1. (1. State Key Laboratory of Shield Machine and Boring Technology, Zhengzhou 450001, Henan, China; 2. China Railway Tunnel Group Co., Ltd., Guangzhou 511458, Guangdong, China; 3. State Key Laboratory of Tunnel Boring Machine and Intelligent Operations, Zhengzhou 450001, Henan, China; 4. Mechatronics T&R Institute, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China)
  • Online:2025-10-20 Published:2025-10-20

摘要: 盾构施工过程中,刀盘监测数据受多作业模式切换、复杂地质条件及多源传感器耦合干扰等因素影响,常包含大量异常值与噪声,严重影响刀盘状态评估与寿命预测的准确性。为提高刀盘监测数据质量,提出一种融合动态分段建模与多维关联分析的刀盘监测数据清洗方法。首先,对监测数据进行初步分段,通过推进力与转矩条件的组合判别,将原始时序作业数据划分为停机、拼装和正常掘进3种不同作业模式,建立带标签的基础数据集; 然后,在初步分段的基础上,以地质综合指标与掘进能量综合指标为分段依据,采用Fisher分割方法对监测数据开展多尺度自适应分段,提取关键特征并刻画不同工况下的时序变化特性,将分段结果和数据相关性信息存储在相关性立方体中; 最后,基于分段结果和数据相关性信息开展异常值检测与修复,即通过建立线性回归模型和推导预测区间实现异常数据的精准识别,并将异常数据所在位置信息以索引形式存入相关性立方体中,再引入图论方法完成异常值的加权修正,保证修复结果在多维相关性和时序连续性上的一致性与合理性。不同数据规模、数据维度及异常值占比条件下的对比试验结果表明,该方法在精确率、召回率、均方根误差和决定系数等多维性能指标上均显著优于传统统计方法、聚类方法及典型插值策略,在复杂、高维、时变监测数据清洗中表现出更优异的异常检测准确性与数据修复的鲁棒性,验证了该数据清洗方法在复杂施工工况下的应用价值。

关键词: 盾构刀盘, 数据清洗, 数据分段, Fisher分割方法, 最小二乘法, 图论

Abstract: During shield tunneling, cutterhead monitoring data are often contaminated by outliers and noise owing to frequent operation mode switching, complex geological conditions, and interference from multiple coupled sensors. These factors considerably compromise the accuracy of cutterhead condition assessment and service life prediction. To improve data quality, a cutterhead monitoring data-cleaning method integrating dynamic segmentation modeling with multidimensional correlation analysis is proposed. First, monitoring data are coarsely segmented by combining thrust and torque conditions, categorizing the original time-series data into three operation modes—shutdown, segment assembly, and normal tunneling—thereby constructing a labeled baseline dataset. Subsequently, multiscale adaptive segmentation is performed using the comprehensive geological index and tunneling energy index as criteria. The segmentation is optimized using the Fisher discriminant method to extract key features and characterize temporal variation patterns across various operating conditions, with segmentation results and correlation information stored in a correlation cube. Outlier detection and correction are then conducted based on segmentation and correlation information. Specifically, a linear regression model is established, and the prediction interval is derived to accurately identify anomalous data. The positions of the detected anomalies are indexed and stored in the correlation cube. Subsequently, a graph-theoretic approach is introduced to perform weighted correction of outliers, ensuring repaired data maintain consistency and rationality in multidimensional correlations and temporal continuity. Comparative experiments across various data scales, dimensionalities, and anomaly ratios demonstrate that the proposed method significantly outperforms traditional statistical methods, clustering approaches, and classical interpolation strategies in precision, recall, root mean square error, and coefficient of determination. The results confirm high outlier detection accuracy and robust data repair performance for complex, high-dimensional, and time-varying monitoring data, demonstrating practical value in shield tunneling applications.

Key words: shield cutterhead, data cleaning, data segmentation, Fisher segmentation technique, least squares method, graph theory