• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (12): 2217-2227.DOI: 10.3973/j.issn.2096-4498.2025.12.003

• 研究与探索 • 上一篇    下一篇

基于改进MFC-PFS的高速公路隧道智慧照明系统

杜峰1, 姚俊豪2, *, 郑小龙2, 郑森财2   

  1. (1. 福建理工大学建筑与城乡规划学院, 福建 福州 350118; 2. 福建理工大学电子电气与物理学院, 福建 福州 350118)
  • 出版日期:2025-12-20 发布日期:2025-12-20
  • 作者简介:杜峰(1980—),男,山东滨州人,2019年毕业于重庆大学,建筑技术科学专业,博士,副教授,现从事公路隧道动态视觉适应及智能照明控制研究工作。E-mail: 59154586@qq.com。* 通信作者: 姚俊豪, E-mail: 1398177313@qq.com。

Intelligent Lighting System for Highway Tunnels Using Enhanced Multifactor Fuzzy Control With Proportional Factor Self-Tuning

DU Feng1, YAO Junhao2, *, ZHENG Xiaolong2, ZHENG Sencai2   

  1. (1. College of Architecture and Planning, Fujian University of Technology, Fuzhou 350118, Fujian, China; 2. School of Electronic, Electrical Engineering and Physics, Fujian University of Technology, Fuzhou 350118, Fujian, China)
  • Online:2025-12-20 Published:2025-12-20

摘要: 为解决高速公路隧道照明系统中多因素模糊规则繁琐、能耗高、调光响应低及延时长等问题,设计一种基于改进多因素模糊控制算法与比例因子自整定(multi-factor fuzzy control-proportional factor self-tuning,MFC-PFS)的隧道智慧照明系统。首先,构建以洞外亮度和车流量为输入变量的模糊核心层及以车速和色温为输入变量的模糊修正层,通过核心层计算出洞内初始需求亮度,再利用修正层进行校准,实现双层模糊控制动态计算需求亮度。其次,通过模拟仿真试验证明: 双层模糊控制在满足隧道照明需求的情况下,可实现色温与需求亮度联动,模糊规则总数较传统单层策略减少了92%,且计算出的亮度更精确; 同分级调光相比,该方案节能率为22.7%。再次,为进一步优化隧道照明调光系统,引入基于模糊推理的自整定模块,自适应调整亮度偏差值及其变换率比例因子。最后,在Simulink环境下分别搭建传统PID控制器、模糊PID控制器及比例因子自整定的模糊PID控制仿真系统,并进行对比试验。结果表明: 模糊PID和自整定模糊PID并无超调量,节能效果较好; 相较于传统PID和模糊PID控制调光,自整定模糊PID的响应时间分别减少了12.3 s和2.8 s。改进后的自整定模糊PID控制系统具有更高精确度和更强稳定性,有效提升了隧道智慧照明效果。

关键词: 隧道照明, 多因素模糊控制, 自整定比例因子, PID控制, 节能

Abstract: The authors present an intelligent tunnel lighting system designed to overcome challenges such as complex multifactor fuzzy rules, high energy consumption, slow dimming response, and long delays in highway lighting systems. The proposed system employs an improved multifactor fuzzy control algorithm with proportional factor self-tuning (MFC-PFS). First, a fuzzy core layer that utilizes external tunnel brightness and traffic flow as input variables is constructed. A fuzzy correction layer is then established that incorporates vehicle speed and color temperature as additional inputs. The initial required internal brightness is calculated through the core layer and refined by the correction layer, allowing for dynamic brightness adjustment via dual-layer fuzzy control. Simulations reveal that this dual-layer approach effectively regulates color temperature and required brightness while meeting tunnel lighting standards. Notably, the number of fuzzy rules is reduced by 92% compared to traditional single-layer strategies, leading to more precise brightness calculations. The proposed method also achieves a 22.7% increase in energy savings compared to stepwise dimming. To further enhance the tunnel lighting dimming system, a self-tuning module based on fuzzy reasoning is introduced to adaptively adjust brightness deviations and their rates of change. Finally, for comparative experiments, simulation models of traditional proportional-integral-derivative (PID) controllers, fuzzy PID controllers, and PFS fuzzy PID controllers are constructed in a Simulink environment. The results show that both the fuzzy PID and PFS fuzzy PID controllers exhibit no overshoot and deliver effective energy-saving performance. The PFS fuzzy PID dimming system shows a response time reduction of 12.3 and 2.8 s compared to traditional PID and fuzzy PID control, respectively. Overall, the enhanced PFS fuzzy PID control system demonstrates superior accuracy and stability, significantly improving the intelligent lighting performance of highway tunnels.

Key words: tunnel lighting, multifactor fuzzy control, proportional factor self-tuning, proportional-integral-derivative control, energy conservation