• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (S2): 222-235.DOI: 10.3973/j.issn.2096-4498.2025.S2.020

• 研究与探索 • 上一篇    下一篇

考虑泡沫改良效应的土压平衡盾构刀盘热-力耦合特性

路遥1, 黄明1, *, 关振长1, 周麒1, 宋珲2, 郑金伙3, 蔡光远4   

  1. (1. 福州大学土木工程学院, 福建 福州 350116; 2. 福建第一公路工程集团有限公司, 福建 泉州 362123;3. 福建省建筑设计研究院有限公司, 福建 福州 350001; 4. 厦门轨道建设发展集团有限公司, 福建 厦门 361004)
  • 出版日期:2025-12-20 发布日期:2025-12-20
  • 作者简介:路遥(1995—),男,安徽萧县人,福州大学岩土工程专业在读博士,研究方向为盾构渣土改良与弃渣资源化利用。E-mail: 220510021@fzu.edu,cn。 *通信作者: 黄明, E-mail: huangming05@fzu.edu.cn。

Thermo-Mechanical Coupling Characteristics of EPB Shield Cutterhead Considering Foam-Conditioned Effect

LU Yao1, HUANG Ming1, *, GUAN Zhenchang1, ZHOU Qi1, SONG Hui2, ZHENG Jinhuo3, CAI Guangyuan4   

  1. (1. School of Civil Engineering, Fuzhou University, Fuzhou 350116, Fujian, China; 2. Fujian No.1 Highway Engineering Group Co., Ltd., Quanzhou 362123, Fujian, China; 3. Fujian Provincial Architectural Design and Research Institute Co., Ltd., Fuzhou 350001, Fujian, China; 4. Xiamen Rail Construction & Development Group Co., Ltd., Xiamen 361004, Fujian, China)
  • Online:2025-12-20 Published:2025-12-20

摘要: 为解决土压平衡盾构掘进过程中刀盘实时受力和温度分布缺乏精细化监测与分析的问题,探讨泡沫改良作用下盾构刀盘的热-力耦合机制及其演化规律。首先通过直剪试验与界面直剪试验,确定分散型泡沫剂改良前后土体的剪切强度参数及土体-刀盘界面摩擦因数; 在此基础上,基于三维有限元方法构建可反映土体-刀盘动态相互作用的热-力耦合数值模型,对刀盘掘进过程进行瞬态模拟分析,系统研究泡沫改良对刀盘应力场与温度场时空演化行为的影响,并揭示排渣效率、刀盘转速等关键施工参数对刀盘热-力学响应的影响机制。结果表明: 1)泡沫改良可显著降低土压平衡盾构刀盘等效切削应力峰值达22.3%,温度峰值降低19.8%,并通过提升排渣与换热效率有效抑制热应力和不均匀膨胀。2)在1.8 r/min高转速下,未改良地层中刀盘应力峰值达66.89 MPa,温度峰值高达133.3 ℃;泡沫改良可有效抑制高速掘进下刀盘的温度升高与应力集中,尤其在转速超过1.5 r/min时效果更为显著,1.8 r/min时刀盘应力降幅达11.12 MPa,温度降幅达16.9 ℃;建议在实际施工中将刀盘转速控制在1.5 r/min以内并结合渣土改良技术,以提升刀盘工作安全性及掘进效率。

关键词: 土压平衡盾构刀盘, 换热效率, 切削应力, 热-力耦合, 泡沫改良效应

Abstract: To address the issue of insufficient real-time monitoring and refined analysis of the cutterhead′s mechanical loading and temperature distribution during earth pressure balance (EPB) shield tunneling, this study explores the thermo-mechanical coupling mechanism and its evolution in the cutterhead under the influence of foam conditioning. Firstly, direct shear tests and interface shear tests were conducted to determine the shear strength parameters of the soil and the soil-cutterhead interface friction coefficient, both before and after conditioning with dispersed foam. On this basis, a thermo-mechanical coupled numerical model capable of reflecting the dynamic soil-cutterhead interaction was established using three-dimensional finite element method, and transient simulations of the cutterhead excavation process were performed. Influence of foam conditioning on the spatiotemporal evolution of the stress and temperature fields on the cutterhead is systematically investigated, revealing the influence mechanisms of key construction parameters such as muck discharge efficiency and cutterhead rotation speed on the thermo-mechanical response of the cutterhead. The results indicate that: (1) Foam conditioning considerably reduces the peak equivalent cutting stress and peak temperature on the EPB shield cutterhead by 22.3% and 19.8%, respectively, and effectively suppresses thermal stress and uneven expansion by improving muck discharge and heat exchange efficiency. (2) At a high rotation speed of 1.8 r/min, the peak stress and temperature on the cutterhead in untreated ground reach 66.89 MPa and 133.3 ℃, respectively. Foam conditioning effectively mitigates temperature rise and stress concentration under high-speed excavation, with the effect being particularly significant when the rotation speed exceeds 1.5 r/min, the stress reduction can reach 11.12 MPa and the temperature reduction can reach 16.9 ℃ when the rotation speed reaches 1.8 r/min. It is recommended that the cutterhead rotation speed be controlled within 1.5 r/min in combination with soil conditioning technology during actual construction to enhance cutterhead operational safety and excavation efficiency.

Key words: EPB shield cutterhead, heat transfer efficiency, cutting stress, thermo-mechanical coupling, foam-conditioned effect