• 中国科学引文数据库(CSCD)来源期刊
  • 中文核心期刊中文科技核心期刊
  • Scopus RCCSE中国核心学术期刊
  • 美国EBSCO数据库 俄罗斯《文摘杂志》
  • 《日本科学技术振兴机构数据库(中国)》
二维码

隧道建设(中英文) ›› 2023, Vol. 43 ›› Issue (1): 92-101.DOI: 10.3973/j.issn.2096-4498.2023.01.010

• 研究与探索 • 上一篇    下一篇

考虑非共轴性的隧道开挖引起的地表沉降数值分析

陈洲泉1, 2, 3, 4, 陈湘生1, 2, 3, 4, 庞小朝3, 5, 苏栋1, 2, 3, 4, 林星涛1, 2, 3, 4   

  1. 1. 深圳大学土木与交通学院, 广东 深圳 518060 2. 深圳大学 滨海城市韧性基础设施教育部重点实验室,

    广东 深圳 518060 3. 深圳大学未来地下城市研究院, 广东 深圳 518060 4. 深圳市地铁地下车站绿色高效智能建造重点实验室, 广东 深圳 518060; 5. 铁科院(深圳)研究设计院有限公司, 广东 深圳 518060)

  • 出版日期:2023-01-20 发布日期:2023-02-16
  • 作者简介:陈洲泉(1988—),男,湖南祁阳人,2019年毕业于同济大学,岩土工程专业,博士后,副研究员,主要从事岩土工程数值计算方面的研究工作。 E-mail: 294629613@qq.com。

Numerical Simulation of Surface Settlement Induced by Tunneling Considering Noncoaxiality

CHEN Zhouquan1, 2, 3, 4, CHEN Xiangsheng1, 2, 3, 4, PANG Xiaochao3, 5 SU Dong1, 2, 3, 4, LIN Xingtao1, 2, 3, 4   

  1. (1.College of Civil and Transportation Engineering, Shenzhen University,Shenzhen 518060,Guangdong,China;2.Key Laboratory for Resilient Infrastructures of Coastal Cities (MOE),Shenzhen University,Shenzhen 518060,Guangdong,China;3.Underground Polis Academy,Shenzhen University,Shenzhen 518060,Guangdong,China;4.Shenzhen Key Laboratory of Green,Efficient and Intelligent Construction of Underground Metro Station,Shenzhen 518060,Guangdong,China;5.Shenzhen Research and Design Institute of China Academy of Railway Sciences,Shenzhen 518060,Guangdong,China)

  • Online:2023-01-20 Published:2023-02-16

摘要:

为研究与主应力旋转密切相关的土体变形非共轴性对隧道工程数值变形分析结果的影响,采用考虑土体变形非共轴性的本构模型对隧道开挖引起地表沉降的问题开展有限元分析。首先,在考虑双曲硬化法则的DruckerPrager模型中引入角点型非共轴流动法则构建非共轴模型;然后,推导该模型的半隐式应力更新算法的理论迭代格式,并编写相应的用户材料子程序UMAT,从而将该模型在ABAQUS/Standard分析模块中进行数值实现;最后,建立平面应变条件的隧道开挖有限元模型,分析考虑非共轴性的主应力旋转对隧道开挖的影响规律。分析结果表明: 1)隧道开挖会在隧道腰部发展出2条交叉的塑性带,分析模型中非共轴塑性模量越小,塑性带延伸越远; 2)随非共轴模量的减小,开挖面周围土体主应力旋转的区域和程度变大; 3)本构模型的非共轴效应越强,隧道开挖引起的最大地表沉降值越大,地表沉降曲线的沉降槽越深; 4)隧道收敛变形中,顶部和侧面向隧道内收敛变形的程度会随模型非共轴塑性模量的减小而增大。

关键词:

非共轴性, 土体变形, 半隐式算法, 隧道开挖, 地表沉降

Abstract: The constitutive model, which is closely related to deformation noncoaxiality induced by stress rotation, is used to investigate the influence of noncoaxiality on tunnel engineering simulation results. First, a noncoaxial model is formulated by incorporating the noncoaxial flow rule into the DruckerPrager considering the hyperbolic hardening rule. Subsequently, necessary deduction of the iteration process of the semiimplicit algorithm for the model is completed. Based on previous theoretical results, the semiimplicit algorithm is programmed into ABAQUS/Standard using the user subroutine UMAT. Finally, a typical finite element model for the tunneling in the plane strain is applied to the numerical analysis. The calculated results show the following: (1) Two intersecting plastic bands are developed from the waist of the tunnel. The longer band originates from the model with a smaller noncoaxial modulus. (2) The smaller noncoaxial modulus results in a larger zone with stress rotation and a larger extent of the rotation of the principal stress. (3) A model with a smaller noncoaxial modulus produces a larger surface settlement induced by the tunneling. (4) The extent of convergence of the tunnel at the bottom and along the sides increases with decreasing noncoaxial modulus.

Key words: noncoaxiality, soil deformation; semiimplicit integration algorithm, tunnel excavation; surface settlement