• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2024, Vol. 44 ›› Issue (7): 1431-1439.DOI: 10.3973/j.issn.2096-4498.2024.07.010

• 高速铁路隧道空气动力学专题 • 上一篇    下一篇

京港高铁万安隧道音爆现象分析及缓解措施研究

马伟斌1, 温国春2, 朱华中2, 韩嘉强1, *, 王辰1, 田经纬1, 程爱君1   

  1. 1. 中国铁道科学研究院集团有限公司铁道建筑研究所, 北京 100081; 2. 中国铁路南昌局集团公司, 江西 南昌 330000
  • 出版日期:2024-07-20 发布日期:2024-08-05
  • 作者简介:马伟斌(1977—),男,山东无棣人,2006年毕业于中国铁道科学研究院,隧道工程专业,博士,研究员,主要从事隧道及地下工程方面的研究工作。E-mail: dwangfei@163.com。 *通信作者: 韩嘉强, E-mail: jq-han@outlook.com。

Sonic Boom and Alleviated Measurements in Wan′an Tunnel of Beijing-Hong Kong High-Speed Railway

MA Weibin1, WEN Guochun2, ZHU Huazhong2, HAN Jiaqiang1, *, WANG Chen1, TIAN Jingwei1, CHENG Aijun1   

  1. (1. Railway Engineering Research Institution, China Academy of Railway Science Corporation Limited, Beijing 100081, China; 2. China Railway Nanchang Group Co., Ltd., Nanchang 330000, Jiangxi, China)
  • Online:2024-07-20 Published:2024-08-05

摘要: 列车运营速度不断提高容易引发高速铁路长大隧道音爆现象,对洞口声环境及行车秩序造成负面影响,而音爆发生机制及相关空气动力学指标特性尚不明确。基于京港高铁万安隧道实车试验,从音爆产生机制和原因、音爆声波频域特性、压力梯度与微气压波规律展开分析,并结合三维精细化数值仿真增补实车测试工况,针对测试隧道探究不同缓解措施的气动缓解效果。结果表明: 1)压缩波在无砟轨道隧道内传播过程中,在非线性效应作用下发生激化,由此诱发了音爆的发生。2)音爆发生时,隧道洞外和洞内的音爆噪声中0~20 Hz的低频段占主要部分。3)列车时速低于300 km时,压缩波在隧道内激化较弱,隧道洞口未出现音爆噪声;当列车时速达到300 km时,压缩波在隧道内激化显著,洞口微气压波幅值较时速250 km时增长近5.5倍,洞口能够监测到明显的音爆噪声。4)对于测试隧道,3种缓冲结构型式缓解措施对于微气压波的缓解效果排序为进、出口同时增设动力学开孔<出口增设动力学开孔<开启3处斜井。

关键词: 高速铁路隧道, 空气动力学效应, 实车测试, 压力波, 音爆

Abstract: The continuous improvement of train operation speed is likely to lead to sonic booms in long tunnels of high-speed railways, negatively impacting the acoustic environment and traffic order at tunnel entrances. However, the mechanism of sonic booms and related aerodynamic index characteristics remain unclear. Based on a real vehicle test conducted in the Wanan tunnel of the Beijing-Hong Kong high-speed railway, the authors analyze the mechanism and causes of sonic booms, the frequency domain characteristics of the phenomenon, the pressure gradient, and the behavior of micro-pressure waves. A three-dimensional refined numerical simulation supplements the real vehicle test conditions, examining the aerodynamic mitigation effects of various measures for the test tunnel. The results reveal the following: (1) The compression wave intensifies under the nonlinear effect during its propagation in the ballastless track tunnel, leading to the occurrence of sonic booms. (2) When sonic booms occur, the low-frequency band of 020 Hz is the main component of the sonic boom noise both outside and inside the tunnel. (3) When the train speed is below 300 km/h, the compression wave intensifies weakly within the tunnel, and no sonic boom noise is detected at the tunnel entrance. However, at a train speed of 300 km/h, the compression wave intensifies significantly in the tunnel, and the amplitude of the micro-pressure wave at the entrance increases nearly 5.5 times compared to that at 250 km/h, resulting in detectable sonic boom noise at the entrance. (4) For the test tunnel, the mitigation effects of three types of buffer structures on micro-pressure waves are ranked as follows: adding dynamic openings at both the inlet and outlet simultaneously < adding dynamic openings at the outlet < opening three inclined shafts.

Key words: high-speed railway tunnel, aerodynamic effect, field test, pressure wave, sonic boom