• 中国科学引文数据库(CSCD)核心期刊
  • 中文核心期刊中文科技核心期刊
  • Scopus RCCSE中国权威学术期刊
  • 美国EBSCO数据库 俄罗斯《文摘杂志》
  • 《日本科学技术振兴机构数据库(中国)》
二维码

隧道建设(中英文) ›› 2024, Vol. 44 ›› Issue (9): 1752-1761.DOI: 10.3973/j.issn.2096-4498.2024.09.004

• 极端环境(寒区等)隧道专题 • 上一篇    下一篇

知识-数据驱动的沉管隧道接头安全状态分析方法——以港珠澳大桥海底沉管隧道为例

丁浩1, 2, 周陈一1, 2, *, 郭鸿雁1, 2, 周云腾1, 2   

  1. (1. 招商局重庆交通科研设计院有限公司, 重庆 400067 2. 公路隧道国家工程研究中心, 重庆 400067)
  • 出版日期:2024-09-20 发布日期:2024-10-12
  • 作者简介:丁浩(1978—),男,湖北洪湖人,2011年毕业于同济大学,隧道及地下建筑工程专业,工学博士,研究员,从事公路隧道运行安全与智能减灾研究工作。E-mail: dinghao@cmhk.com。*通信作者: 周陈一, E-mail: mengyejun1993@gmail.com。

Knowledge-Data-Driven Analysis Method for Safety Status of Immersed Tube Tunnel Joints: A Case Study of Subsea Immersed Tube Tunnel of Hong Kong-Zhuhai-Macao Bridge

DING Hao1, 2, ZHOU Chenyi1, 2, *, GUO Hongyan1, 2, ZHOU Yunteng1, 2   

  1. (1. China Merchants Chongqing Communications Technology Research & Design Institute Co., Ltd., Chongqing 400067, China; 2. National Engineering Research Center for Road Tunnel, Chongqing 400067, China)

  • Online:2024-09-20 Published:2024-10-12

摘要: 为解决沉管隧道接头安全状态不断变化且难以直接感知的技术难点,以港珠澳大桥海底沉管隧道为工程背景,通过分析既有监测数据,总结管节接头的变形模式,揭示管节接头张合量与结构温度的强相关性,明确潮位变化对接头剪切变形的显著影响。在此基础上提出一种基于知识-数据驱动的沉管隧道接头变形快速推演方法,通过建立沉管隧道精细化有限元模型,开展海量典型变形模式下的沉管隧道结构力学行为分析,构建沉管隧道变形服役行为数据集; 利用BP神经网络,建立基于仿真接头服役行为特征的沉管隧道接头全断面变形推演模型,实现基于有限实测数据的接头全断面变形快速重构。该方法在港珠澳大桥海底沉管隧道的现场管养中得到成功应用。以2023年台风“苏拉”为例,基于台风登陆过程中接头的局部位移实测数据,推演接头剪力键及止水带关键点位处管节接头的变形情况。结果表明,该沉管隧道接头系统整体受台风影响较小。

关键词: 知识-数据驱动, 沉管隧道, 管节接头, 安全状态, 仿真分析, 神经网络

Abstract: The safety status of immersed tube tunnel(ITT) joints is continuously evolving, making direct deformation sensing challenging. Therefore, a case study is conducted on the subsea ITT of the Hong Kong-Zhuhai-Macao bridge. By examining existing monitoring data, the deformation patterns of ITT joints are summarized to reveal the strong correlation between the expansion/contraction deformation of joints and structural temperature as well as the significant impact of tidal variations on the shear deformation at joints. Furthermore, a knowledge-data-driven rapid inference method is proposed for joint deformation. This method involves constructing a refined finiteelement model of the tunnel, analyzing its mechanical behavior under various typical deformation modes, and generating a dataset of deformation service behaviors. By employing a back-propagation neural network, a comprehensive cross-sectional deformation inference model is developed for tunnel joints based on the simulated joint service behaviors. This enables the rapid reconstruction of joint deformations using limited actual measurement data. The proposed analytical method has been successfully applied to the on-site maintenance of the ITT of the Hong Kong-Zhuhai-Macao bridge. The case study demonstrates that during Typhoon Saola in 2023, the overall impact of the typhoon on the ITT joint system was relatively small.

Key words: knowledge-data-driven, immersed tube tunnel, pipe joint, safety status, simulation analysis, neural network