• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2024, Vol. 44 ›› Issue (6): 1154-1164.DOI: 10.3973/j.issn.2096-4498.2024.06.003

• 综述 • 上一篇    下一篇

盾构掘进姿态控制技术研究现状与未来展望

陈珂1, 2, 刘天瑞1, 2, *, 杨钊3   

  1. 1. 华中科技大学 国家数字建造技术创新中心, 湖北 武汉 430074; 2. 华中科技大学土木与水利工程学院, 湖北 武汉 430074; 3. 中交第二航务工程局有限公司, 湖北 武汉 430040
  • 出版日期:2024-06-20 发布日期:2024-07-12
  • 作者简介:陈珂(1991—),男,中国香港人,2018年毕业于香港大学,工程信息化专业,博士,副教授,主要从事地下工程智能建造工作。E-mail: chenkecm@hust.edu.cn。

Current Status and Future Prospects of Shield Tunneling Attitude Control Technology

CHEN Ke1, 2, LIU Tianrui1, 2, *, YANG Zhao3   

  1. (1. National Center of Technology Innovation for Digital Construction, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China; 2. School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China; 3. CCCC Second Harbor Engineering Co., Ltd., Wuhan 430040, Hubei, China)
  • Online:2024-06-20 Published:2024-07-12

摘要: 为系统地分析我国盾构掘进姿态控制技术的研究进展,基于知网检索到的32篇相关文献,总结盾构掘进姿态的主要表征参数和影响因素,并以盾构液压推进系统为例论述其控制原理。同时,结合盾构姿态智能控制的部分案例,总结PID控制、自适应控制、模糊控制、基于神经网络的控制和基于智能算法的控制等技术的优劣势及应用场景。基于以上分析,对盾构姿态控制技术的发展方向进行展望。研究发现: 1)盾构掘进姿态的影响因素主要包括几何参数、地层参数和盾构掘进参数。2)由于盾构推进系统需要同时完成盾构向前推进和姿态调整等复杂任务,因此该系统的参数对盾构姿态有着很大的影响,是姿态控制的关键因素之一。3)相较于传统PID控制方法,智能控制方法与PID控制的结合可以提高系统的响应速度、精度、适应能力和鲁棒性。4)未来研究可以围绕基于多源数据融合的控制算法、构建数据-机制混合驱动的控制技术以及加强控制技术在实际工程中的实用性等方面展开,实现更精准、更高效的盾构掘进姿态控制。

关键词: 盾构掘进, 姿态控制, PID控制, 自适应控制, 模糊控制, 神经网络, 智能算法

Abstract: Based on 32 relevant studies retrieved from the China National Knowledge Infrastructure, the authors systematically analyze the research progress of shield tunneling attitude control technology in China by summarizing the primary characterization parameters and influencing factors of shield tunneling attitude and discussing the control principle using the shield hydraulic propulsion system as an example. Additionally, based on some cases of intelligent shield tunneling attitude control in China, the advantages, disadvantages, and application scenarios of technologies such as proportional-integral-derivative(PID) control, adaptive control, fuzzy control, neural network-based control, and intelligent algorithm-based control are summarized. Finally, the development directions for shield tunneling attitude control technology are prospected. Some findings are as follows: (1) The influencing factors of shield tunneling attitude primarily include geometric, stratum, and shield tunneling parameters. (2) Due to the complex tasks of advancing the shield and adjusting its attitude simultaneously in the shield propulsion system, the system parameters significantly impact the shield tunneling attitude and are critical in attitude control. (3) Unlike traditional PID control methods, integrating intelligent control methods with PID control can enhance the systems response speed, accuracy, adaptability, and robustness. (4) Future research could focus on control algorithms based on multisource data fusion, developing control technologies driven by combining data and mechanisms, and strengthening the practicality of control technologies in real-world applications, achieving more precise and efficient control of the shield tunneling attitude.

Key words: shield tunneling, attitude control, proportional-integral-derivative control, adaptive control, fuzzy control, neural network; intelligent algorithm