• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2024, Vol. 44 ›› Issue (S2): 435-444.DOI: 10.3973/j.issn.2096-4498.2024.S2.044

• 施工技术 • 上一篇    下一篇

深埋偏压公路隧道非对称大变形控制技术及初期支护优化——以南朗山一号隧道为例

许万敏1, 徐佳信1, 徐金峰2,  *, 李守仁2   

  1. 1. 云南交投公路建设第六工程有限公司, 云南 昆明 650100; 2. 同济大学地下建筑与工程系, 上海 200092
  • 出版日期:2024-12-20 发布日期:2024-12-20
  • 作者简介:许万敏(1970—),男,云南昆明人,2002年毕业于长沙交通学院,交通管理工程专业,本科,高级工程师,主要从事高速公路工程建设方面的研究工作。E-mail: 915166722@qq.com。*通信作者: 徐金峰, E-mail: 2731037881@qq.com。

Asymmetric Large Deformation Control Technology and Primary Support Optimization of Deep-Buried Asymmetrical-Pressurized Highway Tunnels: A Case Study of Nanlangshan No.1 Tunnel

XU Wanmin1, XU Jiaxin1, XU Jinfeng2, *, LI Shouren2   

  1. (1. Yunnan Jiaotou Highway Construction Sixth Engineering Co., Ltd., Kunming 650100, Yunnan, China; 2. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China)

  • Online:2024-12-20 Published:2024-12-20

摘要: 为解决高地应力偏压断层隧道建设过程中初期支护非对称大变形问题,依托云南省孟勐高速公路南朗山一号隧道开展大变形灾害处置控制技术研究,根据现场监测数据及掌子面揭露情况分析隧道偏压大变形原因,提出采用双层初期支护控制隧道非对称大变形,利用数值模拟对双层初期支护施作时机进行优化设计。研究结果表明: 1)由现场监测数据和初期支护破坏情况可知,隧道采用原支护方案无法抵抗不均匀且巨大的围岩压力,围岩软弱夹层滑移致使隧道发生偏压大变形灾害,滑移主要在软弱夹层完全暴露时发生,导致隧道左肩发生局部弯曲破坏,右侧拱腰出现局部剪切变形破坏; 2)采用双层初期支护方案时,适当推迟第2层初期支护的支护时机,可以有效改善隧道偏压问题,但是第2层初期支护滞后距离过大也会导致隧道变形收敛过大、初期支护屈服失效等问题,建议第2层初期支护滞后第1层初期支护2 m施作; 3)优化后的双层初期支护有效控制了围岩的剪切滑移破坏,隧道拱顶沉降和水平收敛均满足变形要求,隧道两侧变形差异明显减小,围岩偏压问题得到显著控制。

关键词: 偏压公路隧道, 剪切滑移, 数值模拟, 双层初期支护, 滞后距离

Abstract: The primary supports of tunnels crossing asymmetrical-pressurized faults are prone to asymmetric large deformation during construction. In this study, a case study is conducted on the Nanlangshan No.1 tunnel of the Menglian-Menghai expressway in Yunnan, China, and large deformation treatments and control measures are analyzed. Further, the causes for asymmetric large deformation of the tunnel are determined according field measuring data and revealed tunnel face conditions, and the double-layer primary support is proposed to control asymmetric large deformation. Finally, the operation timing of the double-layer primary support is optimized using numerical simulation method. The results reveal the following: (1) The on-site monitoring data and the primary support failure situation show that the original support method cannot withstand the great and uneven surrounding rock pressure, and the slip of the weak interlayer of surrounding rock causes asymmetric large deformation to the tunnel. The slip mainly occurs when the weak interlayer is completely exposed, resulting in local bending failure of the tunnels left shoulder and local shear deformation failure of the right arch waist. (2) When applying double-layer primary support, properly delaying the timing of the second-layer primary support effectively lowers the tunnel asymmetrical pressure. However, excessive lag distance of the second-layer primary support will lead to excessive tunnel deformation convergence and yield failure of the primary support. A 2 m lag distance is recommended for the second- and the first-layer primary supports. (3) The optimized double-layer primary support effectively controls the shearing slip failure of surrounding rock, the tunnel arch settlement and horizontal convergence are controlled within required values, and the deformation difference between the two sides of the tunnel is significantly reduced, showing that the asymmetrical pressure of surrounding rock is significantly minimized.

Key words: asymmetrical-pressurized highway tunnel, shearing slip, numerical simulation, double-layer primary support, lag distance