• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (1): 98-108.DOI: 10.3973/j.issn.2096-4498.2025.01.007

• 研究与探索 • 上一篇    下一篇

机械法联络通道施工参数全局敏感性影响分析

马永政1, 2, 郑义1 *, 朱瑶宏2, 周汪3, 牛富生4, 黄强2   

  1. 1. 宁波工程学院, 浙江 宁波 315211 2. 宁波大学 滨海城市轨道交通协同创新中心, 浙江 宁波 3152113. 中铁十局集团第三建设有限公司, 安徽 合肥 2320384. 广东省隧道结构智能监控与维护企业重点实验室, 广东 广州 511458
  • 出版日期:2025-01-20 发布日期:2025-01-20
  • 作者简介:马永政(1975—),男,湖南常德人,2007年毕业于中科院武汉岩土力学研究所,岩土工程专业,博士,教授,主要从事岩土及地下结构工程理论及试验分析研究工作。 E-mail: 107723274@qq.com。*通信作者: 郑义, E-mail: 1254727035@qq.com。

Analysis of Global Sensitivity of Construction Parameters in Mechanized Cross-Passage Excavation

MA Yongzheng1, 2, ZHENG Yi1, *, ZHU Yaohong2, ZHOU Wang3, NIU Fusheng4, HUANG Qiang2   

  1. (1. Ningbo University of Technology, Ningbo 315211, Zhejiang, China; 2. Zhejiang Coastal City Rail Transit Collaborative Innovation Center, Ningbo University, Ningbo 315211, Zhejiang, China; 3. China Railway 10th Bureau Group Third Construction Co., Ltd., Hefei 232038, Anhui, China; 4. Guangdong Provincial Key Laboratory of Intelligent Monitoring and Maintenance of Tunnel Structure, Guangzhou 511458, Guangdong, China)
  • Online:2025-01-20 Published:2025-01-20

摘要: 为研究机械法联络通道多种施工参数对隧道结构及周围地层环境的影响效应,采用基于Sobol理论的全局敏感性分析方法,建立精细化表达隧道结构及施工辅助设施设计特征的有限元数值模型,结合全施工过程数值模拟试验及监测分析验证,开展施工参数全局敏感性影响分析。结果表明: 1)破洞施工使得主隧道最大变形位移相比施工前增加约34%,最大应力水平增加15.5%,接触界面膜应力增加5%~8%,内支撑体系应力水平为-12~40 MPa,施工完成后有一定程度的回弹或减少; 2)被切削环开洞口附近应力变形变化较明显,管环横截面内外边缘主应力Ⅲ分布曲线呈纺锤形等几何特征; 3)地表位移和隧道变形的计算结果与相应监测值的平均值曲线及变化趋势接近,验证了数值模型结果的合理性; 4)针对应力变形相关的不同施工响应目标指标,各施工参数如土舱压力、顶推力、刀盘转矩以及内支撑预应力等的敏感度大小排序各异,通过探讨敏感度最大的土舱压力参数对螺栓组轴力的影响规律特征,得出其影响安全可控。

关键词: 盾构法, 联络通道, 数值模拟, 位移监测, 施工参数, 全局敏感性分析

Abstract: The authors investigate the influence of various construction parameters on tunnel structure integrity and surrounding geological stability during the mechanical cross-passage excavation. A global sensitivity analysis based on the Sobol method is employed in conjunction with a finite element numerical model that simulates tunnel structure behavior and auxiliary construction facilities. Numerical simulations are conducted throughout the entire construction process, and the results are validated against field monitoring data. Key findings include: (1) During lateral excavation through the main tunnel for cross-passage, the maximum displacement of the main tunnel increases by approximately 34% compared to the pre-construction state, while maximum stress levels rise by 15.5%, and interfacial stresses increases by 5%8%. Stresses within the internal support system range from 12 MPa to 40 MPa. Additionally, structural strains and stresses exhibit a degree of rebound or reduction after construction completion. (2) Significant stress and deformation variations are observed near the cutting ring opening, with principal stress distributions forming spindle-shaped geometries along the inside and outer surfaces of the cutting ring cross-section. (3) The deformation displacement curves from numerical simulations are consistent with field monitoring data, closely matching average trend curves and demonstrating similar variation tendencies, thereby validating the accuracy of the numerical model. (4) Sensitivity analysis indicates varying rankings of construction parameters influence on stress and deformation.  Key influencing parameters include chamber pressure, propulsion force, torque, and prestress in the internal support frame. Among these, chamber pressure is identified as the most sensitive parameter affecting bolt axial forces, which remained within a controllable range.

Key words: shield method, cross-passage, numerical simulation, displacement monitoring, construction parameters, global sensitivity analysis