• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (8): 1494-1504.DOI: 10.3973/j.issn.2096-4498.2025.08.007

• 研究与探索 • 上一篇    下一篇

基于SPH方法的隧道开挖面失稳大变形分析

徐庆锋1, 季晓梦1, 应宏伟2, 3, 张晓帅3, 朱成伟3, *, 周秋培1   

  1. (1. 杭州市电力设计院有限公司, 浙江 杭州 310014; 2. 河海大学岩土力学与堤坝工程教育部重点实验室, 江苏 南京 210098; 3. 浙江大学滨海和城市岩土工程研究中心, 浙江 杭州 310058)
  • 出版日期:2025-08-20 发布日期:2025-08-20
  • 作者简介:徐庆锋(1977—),男,浙江杭州人,2000年毕业于武汉水利电力大学,建筑工程专业,本科,高级工程师,从事电力工程土建设计工作。E-mail: hailler@126.com。*通信作者: 朱成伟, E-mail: chengwei.zhu@zju.edu.cn。

Smoothed Particle Hydrodynamics Modeling of Large Deformations in Tunnel Face Instability

XU Qingfeng1, JI Xiaomeng1, YING Hongwei2, 3, ZHANG Xiaoshuai3, ZHU Chengwei3,*, ZHOU Qiupei1   

  1. (1. Hangzhou Electric Power Design Co., Ltd., Hangzhou 310014, Zhejiang, China; 2. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, Jiangsu, China; 3. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China)
  • Online:2025-08-20 Published:2025-08-20

摘要: 为研究隧道开挖失稳导致的地表沉陷等大变形问题,构建基于动态摩擦因数的Drucker-Prager弹塑性本构模型,并将其嵌入到光滑粒子动力学(smoothed particle hydrodynamics, SPH)数值方法的理论框架。采用筒仓颗粒流及隧道垮塌试验验证所提出的数值方法。在筒仓颗粒流试验中通过粒子图像测速技术(particle image velocimetry,PIV)观测到流动中明显的倒三角区域,并在SPH模拟中进一步得到应变场与应力场的分布,然后基于实际工程,建立隧道垮塌SPH分析模型,研究静摩擦因数和埋深比对隧道垮塌冲出距离及地表沉陷范围的影响。结果表明: 1)开挖面土方冲出距离随着静摩擦因数的减少而增大,土体之间的摩擦力降低,导致土体更容易发生滑动,使得开挖面稳定性下降; 2)随着静摩擦因数的降低,隧道开挖时土体的应力释放更加明显,导致地表沉降槽的宽度和深度增加; 3)隧道埋深比对沉降槽形状影响较大,但对于开挖面土方冲出距离影响较小; 4)随着埋深比的增大,地表沉降槽更浅且更为对称。

关键词: 隧道开挖面失稳, 地表沉陷, 光滑粒子动力学, 筒仓颗粒流, 大变形, 摩擦因数关系式

Abstract: To investigate large deformations, such as ground settlement due to tunnel excavation instability, a Drucker-Prager elastoplastic constitutive model incorporating a dynamic friction coefficient is developed and integrated into the smoothed particle hydrodynamics (SPH) framework. The proposed theoretical framework is validated via silo flow and tunnel collapse tests. In the silo flow experiments, a distinct inverted triangular region is observed in the flow through particle image velocimetry technology. Further, the SPH simulation reveals the strain and stress field distribution. Subsequently, an SPH analysis model for tunnel collapse is established based on real engineering scenarios to examine the effects of the static friction coefficient and burial depth ratio on the runout distance of collapsed materials and the range of surface settlement. The findings are as follows: (1) The runout distance of the excavated material increases as static friction coefficient decreases, with reduced intersoil frictional resistance enhancing susceptibility to soil displacement and reducing tunnel excavation interface stability. (2) With decreasing static friction coefficient, the soil experiences a pronounced release of stresses during tunnel excavation, substantially increasing the width and depth of the surface settlement trough. (3) The tunnel cover-to-diameter ratio significantly affects the shape of the settlement trough but has minimal influence on the runout distance of excavated material. (4) With increasing tunnel cover-to-diameter ratio, the surface settlement trough becomes more developed and symmetrical.

Key words: tunnel face instability, ground subsidence, smoothed particle hydrodynamics, silo flow, large deformation, friction coefficient relation