• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (8): 1590-1601.DOI: 10.3973/j.issn.2096-4498.2025.08.015

• 施工技术 • 上一篇    下一篇

超高压富水花岗岩蚀变带超前注浆加固技术研究与实践——以大瑞铁路高黎贡山隧道出口工区为例

高广义1, 李搏凯1, *, 赵爽1, 徐启鹏1, 朱志敬2   

  1. (1. 中铁隧道局集团(上海)特种高新技术有限公司, 上海 201306; 2. 山东大学岩土与地下工程研究院, 山东 济南 250061)
  • 出版日期:2025-08-20 发布日期:2025-08-20
  • 作者简介:高广义(1984—),男,甘肃庆阳人,2007年毕业于兰州交通大学,建筑环境与设备专业,本科,正高级工程师,现从事隧道及地下工程施工方面的技术及管理工作。E-mail: 151281010@qq.com。 *通信作者: 李搏凯, E-mail: lbkkbl_13258390070@163.com。

Advance Grouting Reinforcement Technology for Ultra-High-Pressure Water-Rich Granite Alteration Zones: A Case Study of Gaoligongshan Tunnel Exit on Dali-Ruili Railway

GAO Guangyi1, LI Bokai1, *, ZHAO Shuang1, XU Qipeng1, ZHU Zhijing2   

  1. (1. China Railway Tunnel Group (Shanghai) Special High-Tech Co., Ltd., Shanghai 201306,China; 2. Geotechnical and Underground Engineering Research Institute, Shandong University, Jinan 250061, Shandong, China)
  • Online:2025-08-20 Published:2025-08-20

摘要: 为综合治理大区段超高压富水花岗岩蚀变带,通过超前注浆加固降低围岩含水率及增强稳定性,实现TBM脱困复推及导坑恢复开挖,系统性研究极端复杂不良地质下开展超前注浆加固的可行性和关键技术。依托大瑞铁路高黎贡山隧道出口工区实践,建立“地质判识-注浆仿真-工艺革新-材料研发-装备升级”五位一体的技术攻关体系。基于现场地质勘察及蚀变岩特性分析,借助多物理场耦合注浆仿真模拟动水压环境下浆液劈裂裂隙网络的填充形态。提出超前分段注浆可行性升级优化的关键技术要点,并通过现场多次注浆试验,攻关实现3大技术突破: 1)研发大转矩高频次液压回转螺旋钻孔工艺,并以工艺组合的方式攻克地层有效成孔率低的难题; 2)以超细水泥为主体,通过掺入高性能外加剂,创建高渗透、强动水抗分散性的复合型注浆材料; 3)研制超高压钻、注装备配套,构建注浆压力可达15 MPa的超高压系统。将所述超前注浆加固技术应用于工程实践,结果表明: 高性能浆液在动水冲蚀下留存率可达近85%,围岩堵水率达92%~95%,围岩变形量控制在18 mm以内,整体注浆工效提升近72%,已成为现场综合治理超高压富水蚀变带地层的关键技术之一。

关键词: 超高压富水花岗岩蚀变带, 注浆仿真, 注浆试验, 高性能外加剂, 超前注浆加固技术

Abstract: Advance grouting reinforcement reduces groundwater inflow and stabilizes surrounding rock, facilitating TBM recovery and bypass tunnel excavation in large-section, high-pressure, water-rich granite alteration zones. The authors systematically investigate the feasibility and key technologies of advance grouting reinforcement under extremely complex and adverse geological conditions. Based on engineering practice at the Gaoligongshan tunnel exit section along the Dali-Ruili railway, a comprehensive technical framework is established—incorporating geological identification, grouting simulation, process innovation, material development, and equipment upgrading. A multi-physical field coupling grouting simulation is conducted to model grout migration within fracture networks under hydrodynamic conditions, leading to the proposal of key technologies for dynamic advance grouting. Field tests yield three major breakthroughs: (1) a high-torque, high-frequency hydraulic rotary drilling system is developed to resolve the low drilling efficiency problem; (2) a high-permeability, dynamic water-resistant composite grout is formulated using ultrafine cement modified with high-performance admixtures; and (3) an ultra-high-pressure drilling and grouting system capable of pressures up to 15 MPa is designed. Engineering results demonstrate that: the system achieves 85% grout retention under hydrodynamic erosion, 92%-95% water-sealing efficiency, deformation control within 18 mm, and an overall grouting efficiency improvement of approximately 72%. This approach proves essential for comprehensive treatment in complex alteration zones.

Key words: ultra-high-pressure water-rich granite alteration zone, grouting simulation, grouting test, high-performance admixture, advance grouting reinforcement technology