• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (9): 1756-1767.DOI: 10.3973/j.issn.2096-4498.2025.09.012

• 规划与设计 • 上一篇    下一篇

三圆盾构建造地铁车站关键技术

李鹏1, 2, 3, 王全胜2, 3, 余长益2, 3, *, 付增2, 3   

  1. (1. 中国矿业大学力学与土木工程学院, 江苏 徐州 221116; 2. 中铁工程装备集团有限公司地下空间设计研究院, 河南 郑州 450016; 3. 中铁工业制造专业研发中心城市地下空间开发技术与装备研发分中心, 河南 郑州 450016)
  • 出版日期:2025-09-20 发布日期:2025-09-29
  • 作者简介:李鹏(1988—),男,河南焦作人,2016年毕业于安徽理工大学,采矿工程专业,硕士,高级工程师,现主要从事隧道及地下工程设计及科研工作。E-mail: real_happy@126.com。*通信作者: 余长益, E-mail: 125474917@qq.com。

Construction Technology of Metro Stations Using Triple-Circular Shield

LI Peng1, 2, 3, WANG Quansheng2, 3, YU Changyi2, 3, *, FU Zeng2, 3   

  1. (1. School of Mechanics & Civil Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China; 2. Underground Space Research and Design Institute, China Railway Engineering Equipment Group Co., Ltd., Zhengzhou 450016, Henan, China; 3. Urban Underground Space Development Technology and Equipment Research and Development Sub-Center, China Railway Industrial Manufacturing Research and Development Center, Zhengzhou 450016, Henan, China)
  • Online:2025-09-20 Published:2025-09-29

摘要: 为解决繁华城区复杂环境下地铁车站建设过程中明挖法施工管线改迁及破拆工程量大、传统矿山法施工需进行降水、施工沉降难以控制、对周边环境影响大等难题,以深圳地铁7号线北大站工程为依托,采用方案比选、理论推导和模型试验的方法,统筹考虑建筑功能、施工便捷性和经济性,从设计和施工2方面对三圆盾构修建地铁车站技术进行研究,提出三圆盾构断面优选设计方案、管片分块及拼装设计方案; 推导三圆盾构地铁车站顶推力理论计算公式,并基于北大站实际情况得到理论计算顶推力为61 534.18 kN; 研究土体物理力学参数、盾体长度、隧道宽度及摩擦因数对海鸥块位置局部背土效应的影响,推导局部背土效应判别公式,计算得到管土间摩擦因数小于0.39时,不会发生局部背土效应,并根据计算结果提出减小背土效应的技术措施; 设计新型预应力管片-型钢混凝土组合梁,并通过模型试验证明相比于无预应力筋工况,在组合梁内设置不同预拉力的预应力筋后,正弯矩工况下,屈服荷载分别提高了28.2%和19.3%,极限荷载分别提高了12.1%和11.7%; 负弯矩工况下,屈服荷载分别提高了47.4%和54.0%,极限荷载分别提高了45.1%和69.3%。

关键词: 地铁车站, 三圆盾构, 结构设计, 顶推力计算, 局部背土, 预应力组合梁

Abstract: The construction of metro stations in complex environments in busy urban areas is a challenging task. The open-cut method necessitates frequent pipeline relocation and substantial breaking works, while traditional mining methods require dewatering, which can induce construction settlement and adversely affect the surrounding environment. Herein, a case study is conducted on the Peking University station on the Shenzhen metro line 7. Scheme comparison, theoretical derivation, and model testing methods are employed to examine the construction technology of the metro stations using triple-circular shield from the perspectives of design and construction. The evaluation comprehensively considers architectural functionality, construction convenience, and construction cost. Optimized design schemes for the cross-section of the triple-circular shield, as well as for segment division and assembly, are proposed. A theoretical calculation formula for the jacking force of triple-circular shield metro stations is derived, yielding a theoretical jacking force of 61 534.18 kN based on the actual conditions of the Peking University station. Furthermore, the influence of soil physico-mechanical parameters—shield length, tunnel width, and friction coefficient—on the local soil load-carrying effect at the gull-wing block position is examined, leading to the derivation of a discriminant formula for the local soil load-carrying effect. The calculations indicate that there is no local load-carrying soil when the friction coefficient between the segment and soil is below 0.39. Based on these results, technical measures are proposed to reduce the soil load-carrying effect. Finally, a novel prestressed segment steel-reinforced concrete composite beam is designed. Model tests demonstrate that, compared to scenarios devoid of prestressed tendons, the inclusion of prestressed tendons with differing tensile forces increases the yield load by 28.2% and 19.3%, respectively, when subjected to positive bending moments and the ultimate load by 12.1% and 11.7%, respectively. Under negative bending moments, the yield load increases by 47.4% and 54.0%, respectively, and the ultimate load increases by 45.1% and 69.3%, respectively.

Key words: metro station, triple-circular shield, structural design, jacking force calculation, local load-carrying soil, prestressed composite beam