• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (12): 2287-2297.DOI: 10.3973/j.issn.2096-4498.2025.12.009

• 研究与探索 • 上一篇    下一篇

海底隧道穿越断裂带结构安全风险分析——以胶州湾第二海底隧道为

倪佳泽1, 李翔2, 张晋彰3, 黄宏伟1, *   

  1. (1. 同济大学土木工程学院地下建筑与工程系, 上海 200092; 2. 青岛国信胶州湾第二海底隧道有限公司, 山东 青岛 266011; 3. 香港科技大学土木与环境工程系, 香港 999077)
  • 出版日期:2025-12-20 发布日期:2025-12-20
  • 作者简介:倪佳泽(2000—),男,福建龙岩人,同济大学土木工程专业在读博士,研究方向为海底隧道风险管理与多因素不确定性耦合。 E-mail: nijz@tongji.edu.cn。 *通信作者: 黄宏伟, E-mail: huanghw@tongji.edu.cn。

Structural Safety Risk Analysis of Subsea Tunnels Crossing Fault Zones in Jiaozhou Bay Second Subsea Tunnel

NI Jiaze1, LI Xiang2, ZHANG Jinzhang3, HUANG Hongwei1, *   

  1. (1. Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China; 2. Qingdao Guoxin Jiaozhou Bay Second Submarine Tunnel Co., Ltd., Qingdao 266011, Shandong, China; 3. Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China)
  • Online:2025-12-20 Published:2025-12-20

摘要: 为解决海底隧道穿越断裂带过程中因围岩变异性高和隧道上覆海水持续补给导致结构安全风险分析复杂的难题,提出一套结构安全风险分析框架。首先,基于青岛胶州湾第二海底隧道,统计分析其海域段所穿越的10个断裂带上的6个参数,构建1个包含1 970组数据的断裂带数据库,并基于此提出荷载指数和柔度指数来分别定量表征隧道上方荷载大小和围岩抵抗变形的能力;其次,基于经现场监测数据验证的三维数值模型,以荷载指数和柔度指数2个指数为输入,以隧道最大拱顶沉降为输出,训练得到Kriging响应面,并进行可靠度分析;再次,结合响应面和可靠度分析,划分5个结构安全风险等级,建立2个指数与风险等级之间的关系;最后,基于先验数据,将2个指数用于青岛胶州湾第二海底隧道穿越f12断裂带风险分析,得到3线各监测断面上的拱顶沉降及对应的结构安全风险等级。研究结果表明: 1)荷载指数和柔度指数分别近似服从正态分布和对数正态分布,相关系数为-0.483; 2)海域段隧道穿越断裂带拱顶沉降20 mm的超越概率为5.28%; 3)该结构安全风险等级快速评估方法在工程现场应用准确率高达90.47%。

关键词: 海底隧道, 断裂带, 风险分析, 荷载指数, 柔度指数, 监测数据, Kriging响应面

Abstract: Subsea tunnels that traverse fault zones face significant structural safety risks due to the high variability of surrounding rock and the influence of overlying seawater. To address this challenge, the authors propose a comprehensive analytical framework for assessing structural safety risk. A case study is conducted on the Qingdao Jiaozhou Bay second subsea tunnel, in which six primary parameters from ten fault zones along the marine section are statistically analyzed, establishing a fault-zone database with 1 970 entries. Based on this database, the load and softness indices are introduced to quantitatively assess the magnitude of overburden loading and the deformation resistance of the surrounding rock, respectively. A validated three-dimensional numerical model is then employed to train a Kriging-based response surface, using the load and softness indices as inputs and the maximum crown settlement as the output, followed by a corresponding reliability analysis. By integrating the response surface with the reliability results, five structural safety risk grades are defined, and the relationship between the indices and the risk grades is established. Finally, the indices are applied to analyze the risk associated with the f12 fault zone crossed by the Jiaozhou Bay second subsea tunnel, resulting in the crown settlement and corresponding risk grades for the monitoring sections along the three tunnel lines. The main findings are as follows: (1) The load and softness indices approximately follow a normal and lognormal distribution, respectively, with a correlation coefficient of -0.483. (2) The exceedance probability of a 20 mm crown settlement when crossing a fault zone in the marine section is 5.28%. (3) The proposed rapid assessment method for structural safety risk grades demonstrates an accuracy of 90.47% in engineering applications.

Key words: subsea tunnel, fault zone, risk analysis, load index, softness index, monitoring data, Kriging-based response surface