• 中国科学引文数据库(CSCD)来源期刊
  • 中文核心期刊中文科技核心期刊
  • Scopus RCCSE中国核心学术期刊
  • 美国EBSCO数据库 俄罗斯《文摘杂志》
  • 《日本科学技术振兴机构数据库(中国)》
二维码

隧道建设(中英文) ›› 2023, Vol. 43 ›› Issue (11): 1935-1943.DOI: 10.3973/j.issn.2096-4498.2023.11.013

• 规划与设计 • 上一篇    下一篇

地震多发区山岭隧道新型隔震结构设计与应用研究

费建波1 23, 魏嘉延1 2 3, 金家康4, 马伟斌5, 陈湘生1 2 3 5   

  1. 1. 极端环境岩土和隧道工程智能建养全国重点实验室, 广东 深圳 518060 2. 滨海城市韧性基础设施教育部重点实验室(深圳大学), 广东 深圳 518060; 3. 深圳大学土木与交通工程学院, 广东 深圳 518060; 4. 中裕铁信交通科技股份有限公司, 河北 衡水 053000;5. 中国铁道科学研究院集团有限公司铁道建筑研究所, 北京 100081)

  • 出版日期:2023-11-20 发布日期:2023-12-08
  • 作者简介:费建波(1988—),男,山东日照人,2016年毕业于清华大学,土木工程专业,博士,研究员,主要从事岩土工程与地下工程领域的研究工作。 Email: feijianbo@szu.edu.cn。

Design and Application of Seismic Isolation Structure for Mountain Tunnels in EarthquakeProne Areas

FEI Jianbo1, 2, 3, WEI Jiayan1, 2, 3, JIN Jiakang4, MA Weibin5, CHEN Xiangsheng1, 2, 3 5   

  1. (1. State Key Laboratory of Intelligent Geotechnics and Tunnelling, Shenzhen 518060, Guangdong, China; 2. Key Laboratory of Coastal Urban Resilient Infrastructures (MOE), Shenzhen University, Shenzhen 518060, Guangdong, China; 3. College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China; 4. Zhongyu Tiexin Jiaotong Science and Technology Co., Ltd., Hengshui 053000, Hebei, China; 5. Railway Engineering Research Institute, China Academy of Railway Sciences Corporation Limited, Beijing 100081, China)

  • Online:2023-11-20 Published:2023-12-08

摘要: 为应对山岭隧道工程穿越活断层和高烈度地震区的挑战,提出在初期支护与二次衬砌之间填充新型橡胶隔震层结构,设计微孔发泡橡胶复合多孔橡胶结构、微孔发泡橡胶复合加劲骨架结构、点带支承隔震结构3种隔震层方案;研制速度相关高阻尼〖JP2〗橡胶材料,并开展循环加载试验验证材料的耗能效果。通过室内静力加载试验和数值计算发现,带状支承隔震结构的刚度随变形增大而增强,这种变刚度特性使隔震层能更好地抵抗地震时快速外部荷载作用,也能适应断层慢速错动。将带状支承橡胶隔震层结构应用于兰新高铁隧道震害修复工程中,设计隧道震害整治现场结构方案,提出施工工艺、工法,实践证明该结构可保证修复后的行车安全。

关键词:

山岭隧道, 橡胶隔震层, 隔震结构, 活动断裂带, 韧性

Abstract:

To overcome the challenges involved in the application of mountain tunnel engineering in regions with active faults and highintensity seismic activity, a structural solution of filling a novel rubber seismic isolation layer between the primary support and secondary lining is proposed. Three isolation layer structure schemes, including a microcellularfoamed rubbercompositeporous rubber structure, a microcellularfoamed rubbercompositestiffened skeleton structure, and a pointband supportdamping structure, are designed. In addition, a highdamping rubber material, tailored for speedrelated applications, is developed. Cyclic loading test is performed to evaluate the energy dissipation effect of these materials. The laboratory static loading test and numerical calculation reveal that the stiffness of the bandshaped supportdamping structure increases with increasing deformation. This variable stiffness of the seismic isolation structure allows for enhanced resistance to rapid external loads during earthquakes and accommodating the gradual shearing associated with fault activity. The bandshaped supportrubber isolation layer structure is implemented in the seismic damage repair project of the LanzhouXinjiang highspeed railway, and the structural solution for the tunnel seismic damage rehabilitation is designed. The application results reveal that the rehabilitation of the tunnel employing the proposed structure ensures the safe operation of vehicles.

Key words: mountain tunnel, rubber seismic isolation layer, seismic isolation structure, active fault zone, resilience