• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2024, Vol. 44 ›› Issue (10): 1941-1949.DOI: 10.3973/j.issn.2096-4498.2024.10.003

• 结构病害诊治与韧性提升专题 • 上一篇    下一篇

基于X-CT成像的泡沫混凝土细观损伤模拟方法

刘继国1 2, 崔庆龙1 2, 舒恒1 2, 彭文波1 2, 杨雪3   

  1. 1. 中交第二公路勘察设计研究院有限公司, 湖北 武汉 430056 2. 中交集团隧道与地下空间工程技术研发中心, 湖北 武汉 430056; 3. 华中科技大学土木与水利工程学院, 湖北 武汉 430074)

  • 出版日期:2024-10-20 发布日期:2024-11-12
  • 作者简介:刘继国(1976—),男,内蒙古商都人,2019年毕业于中国地质大学,隧道工程专业,硕士,正高级工程师,现从事隧道与地下工程科研与设计工作。E-mail: liujiguogg@163.com。

Simulation of Microscopic Damage to Foam Concrete Based on X-Ray-Computed Tomography Imaging

LIU Jiguo1, 2, CUI Qinglong1, 2, SHU Heng1, 2, PENG Wenbo1, 2, YANG Xue3   

  1. (1. CCCC Second Highway Consultants Co., Ltd., Wuhan 430056, Hubei, China; 2. China Communications Construction Company Tunnel and Underground Space Engineering Technology R&D Center, Wuhan 430056, Hubei, China; 3. School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China)

  • Online:2024-10-20 Published:2024-11-12

摘要: 为探究常用于隧道减震设计的泡沫混凝土材料在受压荷载下的细观裂纹损伤发展过程以及细观损伤对宏观力学行为的影响,提出基于X-CT成像从细观尺度分析泡沫混凝土损伤过程的模拟方法。首先,借助X-CT扫描技术获取可表征泡沫混凝土细观多孔结构的X-CT图像,并对该图像进行二值化处理以获取用于建立泡沫混凝土细观模型的二值图; 然后,采用自主编译的Python脚本插入内聚力单元模拟泡沫混凝土模型的损伤开裂过程,并分析不同孔隙率下泡沫混凝土的细观损伤变化规律。研究表明: 1)泡沫混凝土应力-应变曲线上升阶段、塑性平台阶段的细观模拟结果与试验结果吻合较好,该方法为研究泡沫混凝土材料的细观损伤机制和宏观力学参数标定提供了新手段; 2)在单轴受压过程中,连接多孔材料相邻孔隙的水泥基充当了“支柱”作用,接触法向压力随着应变积累而连通发展,泡沫混凝土模型受压时主要表现为剪切破坏; 3)当泡沫混凝土孔隙率较低时,其峰值抗压强度会显著增加,但材料可能会在局部产生大规模开裂,孔隙的作用不能得到充分发挥。

关键词: 泡沫混凝土, X-CT成像, 细观损伤模拟, 内聚力单元

Abstract: Foam concrete materials are widely used in tunnel vibration damping design. Understanding the development of microscopic crack damage under compressive loading and its influence on macroscopic mechanical behavior is essential. Therefore, the authors propose a simulation method based on X-ray-computed tomography(X-CT) imaging to analyze the damage process from a macroscopic perspective. First, X-CT imaging is employed to capture the cellular structure of foam concrete, followed by binarization to generate a binary map for constructing a mesoscopic model. A custom Python script is integrated into the cohesive force unit to simulate the damage and cracking process of the foam concrete model. The microscopic damage behavior under varying porosities is further investigated. The results indicate the following: (1) The simulated stress-strain curves during the rising and stable stages align well with the experimental data, offering a novel approach for understanding the detailed damage mechanisms and calibrating the macro-mechanical parameters of foam concrete. (2) During uniaxial compression, the cementitious matrix linking adjacent pores acts as a "pillar", with the contact normal pressure increasing as strain accumulates and connectivity develops. Foam concrete primarily exhibits shear-induced damage under compression. (3) Lower porosity significantly enhances the peak compressive strength; however, the material may develop extensive local cracks, preventing optimal utilization of the pore space.

Key words: foam concrete, X-ray-computed tomography imaging, microscopic damage simulation, cohesive element