• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2024, Vol. 44 ›› Issue (10): 2049-2057.DOI: 10.3973/j.issn.2096-4498.2024.10.013

• 研究与探索 • 上一篇    下一篇

水平定向钻孔水压致裂地应力测量数值模拟分析

刘夏临1 2, 王震3, 何志坚1 2   

  1. 1. 中交第二公路勘察设计研究院有限公司, 湖北 武汉 430056 2. 中交集团隧道与地下空间工程技术研发中心, 湖北 武汉 430056; 3. 中国交通建设股份有限公司, 北京100088)

  • 出版日期:2024-10-20 发布日期:2024-11-12
  • 作者简介:刘夏临(1986—),男,湖北十堰人,2017年毕业于中国科学院大学,岩土工程专业,博士,高级工程师,现从事隧道与地下空间方面的设计与科研工作。E-mail: 745786066@qq.com。

Numerical Simulation Analysis of In-Situ Stress Measurement Using Hydraulic Fracturing During Horizontal Directional Drilling

LIU Xialin1, 2, WANG Zhen3, HE Zhijian1, 2

#br#   

  1. (1. CCCC Second Highway Consultants Co., Ltd., Wuhan 430056, Hubei, China; 2. Research and Development Center on Tunnel and Underground Space Technology, CCCC, Wuhan 430056, Hubei, China; 3. China Communications Construction Company Limited, Beijing 100088, China)

  • Online:2024-10-20 Published:2024-11-12

摘要: 解决水平钻孔水压致裂法在地应力测量中计算原理不明确的问题,以天山胜利隧道水平定向钻勘察项目为依托,首先构建基于原生裂隙法与多孔交汇法的水平孔围岩三维应力状态理论模型,并探讨其控制边界条件及计算方法; 然后,通过与室内物理模型试验数据进行对比分析,验证理论模型的合理性; 最后,构建水平孔水压致裂法地应力测量有限元模型,通过对比数值模拟、理论计算和室内试验结果,验证该有限元模型建模方法的可行性。结果表明: 1)理论模型计算结果与室内物理模型试验记录数据接近,最大误差为6.8%,说明结合原生裂隙法与多孔交汇法构建的水平孔围岩应力状态理论模型可以适用于基于水平定向钻勘察的水压致裂法地应力计算; 2)数值模拟结果与试验记录数据接近,最大误差为9.51%,说明采用Abaqus扩展有限元法(XFEM)结合嵌入式Cohesive单元的方法能够合理模拟真实水平孔水压致裂测量地应力的过程; 3)理论模型计算结果与数值模拟结果的一致性较好,最大误差在允许范围内,验证了理论模型与有限元模拟方法的正确性、准确性和可靠性。

关键词: 水平定向钻, 水压致裂, 地应力测量, 数值模拟

Abstract: The calculation principles in the measurement of in-situ stresses using the horizontal drilling hydraulic fracturing method are undefined. Therefore, a case study is conducted on a horizontal directional drilling survey project of the Tianshan Shengli tunnel. A theoretical model for the three-dimensional stress state of the surrounding rocks in horizontal boreholes is established on the basis of the native fissure and intersecting porous methods, and its controlling boundary conditions and computational methodologies are investigated. Subsequently, the rationality of the theoretical model is validated through comparative analysis with data from indoor physical model experiments. Finally, a finite element model for stress measurement using hydraulic fracturing in horizontal boreholes is constructed, and its feasibility is validated through comparative analyses of numerical simulations, theoretical calculations, and indoor experimental results. The findings are as follows: (1) The calculated results of the theoretical model closely align with the recorded data from the indoor physical model experiments, with a maximum discrepancy of 6.8%, indicating that the theoretical model for the stress state of surrounding rocks in horizontal boreholes, constructed by integrating the native fissure method and intersecting porous method, is applicable for stress calculations using hydraulic fracturing in surveys based on horizontal directional drilling. (2) The results of numerical simulations closely resemble the experimental records, with a maximum deviation of 9.51%, indicating that the use of the Abaqus extended finite element method combined with embedded cohesive elements can effectively simulate the measurement of stress induced by hydraulic fracturing in real horizontal boreholes. (3) The consistency between the calculated results of the theoretical model and numerical simulations is satisfactory, with the maximum error falling within an acceptable range. This validates the correctness, accuracy, and reliability of both the theoretical model and finite element simulation method.

Key words: horizontal directional drilling, hydraulic fracturing, in-situ stress measurement, numerical simulation