• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2024, Vol. 44 ›› Issue (11): 2133-2138.DOI: 10.3973/j.issn.2096-4498.2024.11.003

• 研究与探索 • 上一篇    下一篇

基于深度图像位姿识别和机构运动学的自动抓取管片试验

庄欠伟1 2, 朱雁飞1, 于宁3, 黄德中1, 杨正1 2, 马志刚1, 袁玮皓1 2   

  1. 1. 上海隧道工程有限公司, 上海 200032 2. 上海城建隧道装备有限公司, 上海 2001373. 上海申通地铁集团有限公司, 上海 200122
  • 出版日期:2024-11-20 发布日期:2024-12-12
  • 作者简介:庄欠伟(1978—),男,山东临沂人,2005年毕业于浙江大学,机械电子专业,博士,正高级工程师,现从事隧道机械技术研究与试验工作。E-mail: qianweizhuang@sohu.com。

Experimental Study of Automatic Segment Grasping Based on Depth-Image Pose Recognition and Kinematic Mechanisms

ZHUANG Qianwei1, 2, ZHU Yanfei1, YU Ning3, HUANG Dezhong1, YANG Zheng1, 2MA Zhigang1, YUAN Weihao1, 2   

  1. (1. Shanghai Tunnel Engineering Co., Ltd., Shanghai 200032, China; 2. Shanghai Urban Construction Tunnel Equipment Co., Ltd., Shanghai 200137, China; 3. Shanghai Shentong Metro Group Co., Ltd., Shanghai 200122, China)
  • Online:2024-11-20 Published:2024-12-12

摘要: 为实现管片自动抓取定位,结合1P5R单臂拼装机,开展深度图像视觉传感器的调研,并对双目、时间飞行法和面结构光3D传感器进行对比分析;将视觉传感器获取的深度图像和管片模型进行匹配,得到管片的位置和姿态;开展视觉传感器与管片拼装机的手眼标定工作,获得它们坐标系间的转换矩阵;利用机器人运动学方法实现单臂拼装机的运动学正逆解,将管片位姿逆解出抓取管片需要的6轴行程,并完成从目前6轴行程到达目标行程的轨迹规划算法。研究和室内试验结果表明: 1)采用深度图像视觉传感器并经过标定可以有效获取管片的位姿; 2)采用运动学正逆解可以利用位姿信息有效引导拼装机,实现管片的自动抓取。

关键词: 深度图像视觉传感器, 管片拼装机, 运动学正逆解, 轨迹规划算法, 转换矩阵

Abstract: To realize the automatic capture and positioning of segments, a depth-image vision sensor is explored based on a 1P5R single-arm erector. The performance of a binocular three-dimensional (3D) sensor and a planar-structured light 3D sensor is compared and analyzed. The depth images captured by the vision sensor are matched with a segment model to determine the segment position and attitude. The hand-eye calibration of the vision sensor and segment erector is conducted to obtain the conversion matrix between their respective coordinate systems. The forward and inverse kinematics of the single-arm erector are derived using the robotic kinematics method. Six-axis travel required for grasping segments is realized by inverting the position and attitude of the segment, and a trajectory-planning algorithm is developed from the current six-axis travel to the target travel. Research and laboratory experiments reveal the following: (1) Position and attitude can be effectively obtained using the depth-image sensor and calibration. (2) The forward and inverse kinematic solutions can effectively guide the erector to realize automatic segment grasping using the position and attitude information.

Key words: depth-image vision sensor, segment erector, forward and inverse kinematic solutions, trajectory-planning algorithm, transformation matrix