- CSCD核心中文核心科技核心
- RCCSE(A+)公路运输高质量期刊T1
- Ei CompendexScopusWJCI
- EBSCOPж(AJ)JST

隧道建设(中英文) ›› 2024, Vol. 44 ›› Issue (11): 2139-2148.DOI: 10.3973/j.issn.2096-4498.2024.11.004
曾毅1, 吴嘉敏1, 卞跃威1, 唐嘉佑2, 闫涛2, 沈水龙2, *
ZENG Yi1, WU Jiamin1, BIAN Yuewei1, TANG Jiayou2, YAN Tao2, SHEN Shuilong2, *
摘要: 为保障盾构施工安全并提升掘进效率,提出基于长短时记忆神经网络(LSTM)算法的大直径泥水平衡盾构掘进姿态预测方法。选取泥水平衡盾构掘进过程中的参数,并采用Pearson相关系数对盾构姿态的关联因素进行分析,获取影响盾构姿态的主要因素,以此构建盾构姿态预测数据集;采用长短时记忆神经网络建立盾构姿态预测模型,并利用自适应估计(Adam)算法对其进行优化以获取最优的盾构姿态预测结果。盾构姿态的预测参数主要包括: 盾头水平偏差(HDSH)、盾头垂直偏差(VDSH)、盾尾水平偏差(HDST)、盾尾垂直偏差(VDST)、俯仰角(R)、滚动角(P)。影响盾构姿态预测结果的主要因素为盾构参数和地层参数,其中,盾构分组油缸压力和地层平均抗压/抗剪强度对盾构姿态的影响最大。经过优化的Adam-LSTM神经网络模型对盾构角度的预测效果最优,均方差在0.1以下;对盾构姿态各项参数预测的平均误差小于5%的占比超过80%。