• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2024, Vol. 44 ›› Issue (11): 2139-2148.DOI: 10.3973/j.issn.2096-4498.2024.11.004

• 研究与探索 • 上一篇    下一篇

基于LSTM算法的大直径泥水平衡盾构掘进姿态预测

曾毅1, 吴嘉敏1, 卞跃威1, 唐嘉佑2, 闫涛2, 沈水龙2 *   

  1. (1. 上海市隧道工程轨道交通设计研究院, 上海 200235; 2. 汕头大学工学院, 广东 汕头 515063)
  • 出版日期:2024-11-20 发布日期:2024-12-12
  • 作者简介:曾毅(1979—),男,上海人,2013年毕业于上海交通大学,土木工程专业,硕士,教授级高级工程师,主要从事隧道工程、市政工程设计与施工工作。E-mail: 23611793@qq.com。 *通信作者: 沈水龙, E-mail: shensl@stu.edu.cn。

Tunneling Attitude Prediction for Large-Diameter Slurry Balance Shields Using Long Short-Term Memory

ZENG Yi1, WU Jiamin1, BIAN Yuewei1, TANG Jiayou2, YAN Tao2, SHEN Shuilong2, *   

  1. (1. Shanghai Tunnel Engineering & Rail Transit Design and Research Institute, Shanghai 200235, China; 2. College of Engineering, Shantou University, Shantou 515063, Guangdong, China)
  • Online:2024-11-20 Published:2024-12-12

摘要: 为保障盾构施工安全并提升掘进效率,提出基于长短时记忆神经网络(LSTM)算法的大直径泥水平衡盾构掘进姿态预测方法。选取泥水平衡盾构掘进过程中的参数,并采用Pearson相关系数对盾构姿态的关联因素进行分析,获取影响盾构姿态的主要因素,以此构建盾构姿态预测数据集;采用长短时记忆神经网络建立盾构姿态预测模型,并利用自适应估计(Adam)算法对其进行优化以获取最优的盾构姿态预测结果。盾构姿态的预测参数主要包括: 盾头水平偏差(HDSH)、盾头垂直偏差(VDSH)、盾尾水平偏差(HDST)、盾尾垂直偏差(VDST)、俯仰角(R)、滚动角(P)。影响盾构姿态预测结果的主要因素为盾构参数和地层参数,其中,盾构分组油缸压力和地层平均抗压/抗剪强度对盾构姿态的影响最大。经过优化的Adam-LSTM神经网络模型对盾构角度的预测效果最优,均方差在0.1以下;对盾构姿态各项参数预测的平均误差小于5%的占比超过80%

关键词: 大直径盾构隧道, 泥水平衡盾构, 姿态预测, LSTM算法

Abstract: The authors present a tunneling attitude prediction method, based on the long short-term memory(LSTM) algorithm, to enhance tunneling safety and efficiency for large-diameter slurry balance shields. Shield tunneling parameters are analyzed using the Pearson correlation coefficient to identify the primary factors that affect the tunneling attitude. These factors are then used to establish a prediction dataset. An LSTM neural network model is developed for shield attitude prediction, with the Adam algorithm applied to optimize the LSTMs performance. The key prediction parameters for shield attitude include horizontal deviation of the shield head, vertical deviation of the shield head, horizontal deviation of the shield tail, vertical deviation of the shield tail, pitch angle, and roll angle. The identified primary factors that influence the shield attitude are the shield operational parameters and geological conditions, with hydraulic cylinder pressure and the average compressive/shear strength of the strata showing the most significant effect. The optimized Adam-LSTM neutral network demonstrates a superior shield-attitude prediction performance, achieving a mean square error of <0.1 and an average prediction error of <5%, with more than 80% of the output results.

Key words: large-diameter shield tunnel, slurry balance shield, attitude prediction, long short-term memory algorithm