• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2024, Vol. 44 ›› Issue (8): 1567-1575.DOI: 10.3973/j.issn.2096-4498.2024.08.004

• 研究与探索 • 上一篇    下一篇

盾构掘进引起砂土沉降及管道脱空模型试验研究

祁军1, 王忠杰2, 3, 4, 陈子君1, 林存刚2, 3, 4, *, 谢稳江1, 梁禹2, 3, 4, 赵茗洁1, 赵辰洋2, 3   

  1. 1. 广东珠肇铁路有限责任公司, 广东 广州 510000 2. 中山大学土木工程学院 广东省海洋土木工程重点实验室 广东省地下空间开发工程技术研究中心, 广东 广州 510275; 3. 隧道工程灾变防控与智能建养全国重点实验室, 广东 广州 510275; 4. 南方海洋科学与工程广东省实验室(珠海), 广东 珠海 519082)

  • 出版日期:2024-08-20 发布日期:2024-09-12
  • 作者简介:祁军(1975—),男,江西鄱阳人,1997年毕业于西南交通大学,建筑学专业,本科,高级工程师,现从事铁路项目建设管理工作。E-mail: zztl@grci.com.cn。*通信作者: 林存刚, E-mail: lincg@mail.sysu.edu.cn。

Experimental Modeling of Sand Settlement and Pipeline Void Formation Caused by Shield Tunneling

QI Jun1, WANG Zhongjie2, 3, 4, CHEN Zijun1, LIN Cungang2, 3, 4, *, XIE Wenjiang1, LIANG Yu2, 3, 4ZHAO Mingjie1, ZHAO Chenyang2, 3   

  1. (1. Guangdong Zhuzhao Railway Co., Ltd., Guangzhou 510000, Guangdong, China; 2. Guangdong Key Laboratory of Marine Civil Engineering, Guangdong Research Center for Underground Space Exploitation Technology, School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, China; 3. State Key Laboratory for Tunnel Engineering, Guangzhou 510275, Guangdong, China; 4. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, Guangdong, China)

  • Online:2024-08-20 Published:2024-09-12

摘要: 为系统研究盾构隧道开挖引起的土与管线相互作用问题,揭示盾构掘进过程中地层位移的复杂性及管土界面接触状态变化规律,采用缩尺物理模型试验方法,制作可监测管线沉降、管底脱空和管底土压的模型管线,通过拔管的方式来模拟盾构隧道掘进过程,依次开展盾构掘进引起砂土深层沉降试验、管线响应与管土脱空试验。试验结果表明: 1)盾构隧道开挖引起的深层土体沉降仍符合高斯分布,沉降槽宽度参数与地层损失率均随地层埋深呈现非线性变化。2)试验证实了在较大的地层损失条件下容易出现管土脱空现象,隧道开挖引起的最大管线变形和管底脱空值均随管线埋深增大而增大,而管底脱空范围递减。3)当管线挠曲较小时,管线与土体保持紧密接触; 随着盾构掘进,在开挖面距管线1.5倍隧道直径处其底部开始出现脱空现象,开挖面距离管线1倍隧道直径至离开管线1倍隧道直径是脱空的主要发展阶段。    

关键词: 盾构隧道, 管线变形, 脱空, 管土相互作用, 模型试验

Abstract: To systematically investigate the interaction between soil and pipeline caused by shield tunneling and to elucidate the complexities of ground displacement and the changing state of pipe-soil interface contact, a scaled physical model test is employed. This model pipeline is designed to monitor pipeline settlement, pipe void formation, and subsoil pressure. Furthermore, shield tunneling process is simulated through tube extraction, followed by sequential tests on deep soil settling, pipeline response, and pipe soil voiding. The experimental results reveal the following: (1) Deep soil settlement caused by shield tunneling conforms to a Gaussian distribution, with the width of the settlement and volume loss exhibiting nonlinear changes with soil depth. (2) The tests confirm that significant volume loss leads to the formation of voids. The maximum deflection of the pipeline and the void height increase with burial depth, while the void width decreases. (3) During tunneling, voids begin to form at the pipeline bottom when the excavation face is approximately 1.5 times the tunnel diameter away. The primary development of voids occurs within one tunnel diameter from the pipeline.

Key words: shield tunnel, pipeline deformation, void, pipe-soil interaction, model test